range of f(x)=(x-7)/(x^2+7)
|
range\:f(x)=\frac{x-7}{x^{2}+7}
|
range of f(x)=(2x)/(-4x-20)
|
range\:f(x)=\frac{2x}{-4x-20}
|
inverse of f(x)=5^x-9
|
inverse\:f(x)=5^{x}-9
|
critical points of f(x)=(4x)/(x^2+4)
|
critical\:points\:f(x)=\frac{4x}{x^{2}+4}
|
extreme points of f(x)=(x^2-3x-4)/(x-2)
|
extreme\:points\:f(x)=\frac{x^{2}-3x-4}{x-2}
|
slope of y+1/2 x=0
|
slope\:y+\frac{1}{2}x=0
|
inverse of 4x-9x^{1/2}
|
inverse\:4x-9x^{\frac{1}{2}}
|
domain of 1/(2sqrt(6-x))
|
domain\:\frac{1}{2\sqrt{6-x}}
|
intercepts of x^2+3x+14
|
intercepts\:x^{2}+3x+14
|
domain of 2sqrt(x+3)-5
|
domain\:2\sqrt{x+3}-5
|
inverse of f(x)=4+log_{5}(x-2)
|
inverse\:f(x)=4+\log_{5}(x-2)
|
inverse of f(x)= 1/(x-3)
|
inverse\:f(x)=\frac{1}{x-3}
|
domain of f(x)=sqrt(x^2+x+1)
|
domain\:f(x)=\sqrt{x^{2}+x+1}
|
domain of (x+2)^2-4
|
domain\:(x+2)^{2}-4
|
range of 1/(9-x^2)
|
range\:\frac{1}{9-x^{2}}
|
inverse of f(x)=9x-3
|
inverse\:f(x)=9x-3
|
asymptotes of (2+x^4)/(x^2-x^4)
|
asymptotes\:\frac{2+x^{4}}{x^{2}-x^{4}}
|
intercepts of (2x)/(x^2-4)
|
intercepts\:\frac{2x}{x^{2}-4}
|
parallel y=2x,\at (-3,2)
|
parallel\:y=2x,\at\:(-3,2)
|
asymptotes of f(x)=(x-3)/(3x-6)
|
asymptotes\:f(x)=\frac{x-3}{3x-6}
|
critical points of f(x,y)=4x^3-3x^2=3y^2
|
critical\:points\:f(x,y)=4x^{3}-3x^{2}=3y^{2}
|
domain of f(x)=sqrt(sin(x))
|
domain\:f(x)=\sqrt{\sin(x)}
|
inverse of ln(X+8)
|
inverse\:\ln(X+8)
|
amplitude of-2cos(5x)
|
amplitude\:-2\cos(5x)
|
slope of x+3y=-3
|
slope\:x+3y=-3
|
inverse of f(x)=1.05x
|
inverse\:f(x)=1.05x
|
intercepts of (x^2-8x+12)/(x^2-2x-24)
|
intercepts\:\frac{x^{2}-8x+12}{x^{2}-2x-24}
|
domain of f(x)=x-4> 0
|
domain\:f(x)=x-4\gt\:0
|
domain of f(x)=x^2-6x-16
|
domain\:f(x)=x^{2}-6x-16
|
asymptotes of f(x)=(x^5+2x^3+3)/(x-4)
|
asymptotes\:f(x)=\frac{x^{5}+2x^{3}+3}{x-4}
|
inverse of f(x)=x+4g(x)=x-4
|
inverse\:f(x)=x+4g(x)=x-4
|
domain of 10-x^6
|
domain\:10-x^{6}
|
domain of f(x)= 6/(x^2-1)
|
domain\:f(x)=\frac{6}{x^{2}-1}
|
domain of f(x)=sqrt(t+10)
|
domain\:f(x)=\sqrt{t+10}
|
inverse of f(x)=sqrt(x^2+2x)
|
inverse\:f(x)=\sqrt{x^{2}+2x}
|
inverse of f(x)= 1/2 x+3/2
|
inverse\:f(x)=\frac{1}{2}x+\frac{3}{2}
|
inverse of f(x)=-8x+4
|
inverse\:f(x)=-8x+4
|
inverse of (2x)/(x+5)
|
inverse\:\frac{2x}{x+5}
|
inverse of f(x)=(x+18)/(x-6)
|
inverse\:f(x)=\frac{x+18}{x-6}
|
line (1,7.5)(3,16.875)
|
line\:(1,7.5)(3,16.875)
|
inverse of f(x)=2^x+3
|
inverse\:f(x)=2^{x}+3
|
inflection points of sqrt(x+3)
|
inflection\:points\:\sqrt{x+3}
|
inverse of 4-2sqrt(x)
|
inverse\:4-2\sqrt{x}
|
midpoint (10,3)(0,1)
|
midpoint\:(10,3)(0,1)
|
domain of 1/(x+7)
|
domain\:\frac{1}{x+7}
|
range of f(x)=(x-1)/(1+x^2)
|
range\:f(x)=\frac{x-1}{1+x^{2}}
|
distance (-4,4)(5,-1)
|
distance\:(-4,4)(5,-1)
|
slope of x+3y=12
|
slope\:x+3y=12
|
slope of 2x+3y=7
|
slope\:2x+3y=7
|
midpoint (24,22),(13,29)
|
midpoint\:(24,22),(13,29)
|
range of 3^x
|
range\:3^{x}
|
inverse of sqrt(x-4)
|
inverse\:\sqrt{x-4}
|
domain of f(x)=x^2-8x
|
domain\:f(x)=x^{2}-8x
|
domain of f(x)=2sqrt(-1-x)
|
domain\:f(x)=2\sqrt{-1-x}
|
intercepts of f(x)=y=-4x+8
|
intercepts\:f(x)=y=-4x+8
|
extreme points of f(x)=(2x+5)/3
|
extreme\:points\:f(x)=\frac{2x+5}{3}
|
inverse of f(x)=0.9242
|
inverse\:f(x)=0.9242
|
domain of f(x)=-10x^2
|
domain\:f(x)=-10x^{2}
|
inverse of (4r+45)/(r+9)
|
inverse\:\frac{4r+45}{r+9}
|
inverse of f(x)=e^{6x-7}
|
inverse\:f(x)=e^{6x-7}
|
midpoint (10,4)(20,1)
|
midpoint\:(10,4)(20,1)
|
periodicity of 0.3sin(0.2)(x-(pi)/4)
|
periodicity\:0.3\sin(0.2)(x-\frac{\pi}{4})
|
inverse of f(x)=(1-x)^{1/8}
|
inverse\:f(x)=(1-x)^{\frac{1}{8}}
|
range of 1/(x^{1/2)}
|
range\:\frac{1}{x^{\frac{1}{2}}}
|
range of f(x)=((x+1))/((x-2))
|
range\:f(x)=\frac{(x+1)}{(x-2)}
|
asymptotes of f(x)= x/3
|
asymptotes\:f(x)=\frac{x}{3}
|
inverse of f(x)=y=-2x-1
|
inverse\:f(x)=y=-2x-1
|
inverse of f(x)=3x+1
|
inverse\:f(x)=3x+1
|
intercepts of 2x^3-3x^2-36x
|
intercepts\:2x^{3}-3x^{2}-36x
|
asymptotes of f(x)= 2/(x^2+3x)
|
asymptotes\:f(x)=\frac{2}{x^{2}+3x}
|
inverse of f(x)=x^2=
|
inverse\:f(x)=x^{2}=
|
domain of f(x)=((5x-5))/((x^2-1))
|
domain\:f(x)=\frac{(5x-5)}{(x^{2}-1)}
|
intercepts of f(x)=x^2+3x+1/4
|
intercepts\:f(x)=x^{2}+3x+\frac{1}{4}
|
extreme points of f(x)=e^x+4
|
extreme\:points\:f(x)=e^{x}+4
|
domain of f(x)=-3x+2
|
domain\:f(x)=-3x+2
|
domain of x+2
|
domain\:x+2
|
domain of sqrt(x+4)-(sqrt(1-x))/x
|
domain\:\sqrt{x+4}-\frac{\sqrt{1-x}}{x}
|
inverse of f(x)= 8/(x-6)
|
inverse\:f(x)=\frac{8}{x-6}
|
domain of (x+8)/(x^2-4)
|
domain\:\frac{x+8}{x^{2}-4}
|
inverse of f(x)=(x-3)/x
|
inverse\:f(x)=\frac{x-3}{x}
|
extreme points of cos(2x+5)
|
extreme\:points\:\cos(2x+5)
|
intercepts of f(x)=2(x+3)^2-18
|
intercepts\:f(x)=2(x+3)^{2}-18
|
domain of x^2+x+3
|
domain\:x^{2}+x+3
|
domain of 3x^2+7x+5
|
domain\:3x^{2}+7x+5
|
symmetry x^2-9
|
symmetry\:x^{2}-9
|
perpendicular y= x/2-9(8,-7)
|
perpendicular\:y=\frac{x}{2}-9(8,-7)
|
asymptotes of f(x)=y=-3/(4x)
|
asymptotes\:f(x)=y=-\frac{3}{4x}
|
range of 1/(x^2-x-6)
|
range\:\frac{1}{x^{2}-x-6}
|
inverse of f(x)=sqrt(2x-1)
|
inverse\:f(x)=\sqrt{2x-1}
|
domain of f(x)=(x+4)/(x+2)
|
domain\:f(x)=\frac{x+4}{x+2}
|
parallel y=-2/5 x+1
|
parallel\:y=-\frac{2}{5}x+1
|
extreme points of f(x)=sin(5x)
|
extreme\:points\:f(x)=\sin(5x)
|
domain of sqrt(3-x)+sqrt(25-x^2)
|
domain\:\sqrt{3-x}+\sqrt{25-x^{2}}
|
inverse of f(x)=ln(x)-2
|
inverse\:f(x)=\ln(x)-2
|
inflection points of f(x)=(6-x)e^{-x}
|
inflection\:points\:f(x)=(6-x)e^{-x}
|
inverse of f(x)=(4-3x)/5
|
inverse\:f(x)=\frac{4-3x}{5}
|
inverse of f(x)=-5/2 x+15
|
inverse\:f(x)=-\frac{5}{2}x+15
|
slope of A(-3,-2)2x+y-5=0
|
slope\:A(-3,-2)2x+y-5=0
|
asymptotes of f(x)=(x^2)/x
|
asymptotes\:f(x)=\frac{x^{2}}{x}
|
inverse of (x+5)/(1-3x)
|
inverse\:\frac{x+5}{1-3x}
|