midpoint (3,-1)(7,-10)
|
midpoint\:(3,-1)(7,-10)
|
asymptotes of f(x)= 3/x
|
asymptotes\:f(x)=\frac{3}{x}
|
asymptotes of f(x)=(6x^3-9x)/(2x^3-7x+5)
|
asymptotes\:f(x)=\frac{6x^{3}-9x}{2x^{3}-7x+5}
|
parity f(x)=(e^x-1)/(e^x+1)
|
parity\:f(x)=\frac{e^{x}-1}{e^{x}+1}
|
inverse of f(x)=(3x+8)/(2x-3)
|
inverse\:f(x)=\frac{3x+8}{2x-3}
|
inverse of (x^2(x+1))/(x+1)
|
inverse\:\frac{x^{2}(x+1)}{x+1}
|
parity x^3-5x
|
parity\:x^{3}-5x
|
domain of (2(x+2))/(x^2)
|
domain\:\frac{2(x+2)}{x^{2}}
|
inverse of f(x)=(x-1)/(x+1)-3
|
inverse\:f(x)=\frac{x-1}{x+1}-3
|
periodicity of f(x)=-sin(4x)
|
periodicity\:f(x)=-\sin(4x)
|
range of (2x+3)/4
|
range\:\frac{2x+3}{4}
|
range of 4/(x+5)
|
range\:\frac{4}{x+5}
|
domain of-x^2+16x-94
|
domain\:-x^{2}+16x-94
|
domain of f(x)=[2x]
|
domain\:f(x)=[2x]
|
intercepts of f(x)= 3/4 x
|
intercepts\:f(x)=\frac{3}{4}x
|
monotone intervals f(x)=3xsqrt(2x^2+4)
|
monotone\:intervals\:f(x)=3x\sqrt{2x^{2}+4}
|
domain of 2/((2x-5)^{0.5)}
|
domain\:\frac{2}{(2x-5)^{0.5}}
|
periodicity of f(x)=cos(3x)
|
periodicity\:f(x)=\cos(3x)
|
perpendicular y=3x-7
|
perpendicular\:y=3x-7
|
inverse of f(x)= x/(2x-3)
|
inverse\:f(x)=\frac{x}{2x-3}
|
intercepts of f(x)=4(x-2)-1
|
intercepts\:f(x)=4(x-2)-1
|
inverse of f(x)=2(1/4)^x
|
inverse\:f(x)=2(\frac{1}{4})^{x}
|
range of 1/x
|
range\:\frac{1}{x}
|
inverse of f(x)=x^2-6x+5,x<= 3
|
inverse\:f(x)=x^{2}-6x+5,x\le\:3
|
domain of 3x+7
|
domain\:3x+7
|
domain of f(x)=sqrt((25-x^2)/(x+1))
|
domain\:f(x)=\sqrt{\frac{25-x^{2}}{x+1}}
|
domain of (7x+1)/(1+x)
|
domain\:\frac{7x+1}{1+x}
|
domain of f(x)= 1/(x^2-5x-6)
|
domain\:f(x)=\frac{1}{x^{2}-5x-6}
|
inverse of log_{10}(x+4)
|
inverse\:\log_{10}(x+4)
|
extreme points of f(x)=3x^5-20x^3
|
extreme\:points\:f(x)=3x^{5}-20x^{3}
|
amplitude of 1/3 cos(x)
|
amplitude\:\frac{1}{3}\cos(x)
|
range of f(x)=(8x-3)/4
|
range\:f(x)=\frac{8x-3}{4}
|
monotone intervals f(x)=2x^3-24x
|
monotone\:intervals\:f(x)=2x^{3}-24x
|
domain of f(x)=(3x)/(x^2-1)
|
domain\:f(x)=\frac{3x}{x^{2}-1}
|
parity (tan(x))/(x^2)
|
parity\:\frac{\tan(x)}{x^{2}}
|
intercepts of f(x)=x^2-4x-2
|
intercepts\:f(x)=x^{2}-4x-2
|
sin^2(θ)
|
\sin^{2}(θ)
|
domain of f(x)=x^2+6x+11
|
domain\:f(x)=x^{2}+6x+11
|
critical points of f(x)=4(x-5)^{2/3}
|
critical\:points\:f(x)=4(x-5)^{\frac{2}{3}}
|
domain of 1+8x-2x^3
|
domain\:1+8x-2x^{3}
|
amplitude of y=6sin(x)
|
amplitude\:y=6\sin(x)
|
amplitude of-5sin(2x+(pi)/2)
|
amplitude\:-5\sin(2x+\frac{\pi}{2})
|
domain of f(x)=sqrt((x-3)/(x-5))
|
domain\:f(x)=\sqrt{\frac{x-3}{x-5}}
|
critical points of f(x)= x/((x^2+1)^2)
|
critical\:points\:f(x)=\frac{x}{(x^{2}+1)^{2}}
|
inverse of f(x)=3*sqrt(2x-1)
|
inverse\:f(x)=3\cdot\:\sqrt{2x-1}
|
domain of f(x)=x^2-2x^3
|
domain\:f(x)=x^{2}-2x^{3}
|
intercepts of f(x)=-x^2+10x-21
|
intercepts\:f(x)=-x^{2}+10x-21
|
inverse of f(x)=(3-3x)/(6x-1)
|
inverse\:f(x)=\frac{3-3x}{6x-1}
|
midpoint ,(1/3 ,-5/4)\land (3/4 ,-4)
|
midpoint\:,(\frac{1}{3},-\frac{5}{4})\land\:(\frac{3}{4},-4)
|
domain of f(x)= 4/(sqrt(1-3x))
|
domain\:f(x)=\frac{4}{\sqrt{1-3x}}
|
extreme points of f(x)=6(x-e^x)
|
extreme\:points\:f(x)=6(x-e^{x})
|
inverse of f(x)=2x+8
|
inverse\:f(x)=2x+8
|
extreme points of f(x)=-x+ln(x)
|
extreme\:points\:f(x)=-x+\ln(x)
|
domain of f(x)=-(2x)/((x+1)^2(x-1)^2)
|
domain\:f(x)=-\frac{2x}{(x+1)^{2}(x-1)^{2}}
|
slope of 3x+2
|
slope\:3x+2
|
inverse of f(x)=(x+4)^2-1
|
inverse\:f(x)=(x+4)^{2}-1
|
domain of f(x)=sqrt(7-x)
|
domain\:f(x)=\sqrt{7-x}
|
domain of-x^2+4
|
domain\:-x^{2}+4
|
range of-x-5
|
range\:-x-5
|
domain of x^2+1/x
|
domain\:x^{2}+\frac{1}{x}
|
inverse of f(x)=(8t)/3+8
|
inverse\:f(x)=\frac{8t}{3}+8
|
monotone intervals (4x-12)/((x-2)^2)
|
monotone\:intervals\:\frac{4x-12}{(x-2)^{2}}
|
range of f(x)=x^2-49
|
range\:f(x)=x^{2}-49
|
inflection points of (0.2)^{2/3}(1.2)
|
inflection\:points\:(0.2)^{\frac{2}{3}}(1.2)
|
extreme points of (x^2-4x)/(x^2-4x-12)
|
extreme\:points\:\frac{x^{2}-4x}{x^{2}-4x-12}
|
parity cos(sec(x))
|
parity\:\cos(\sec(x))
|
inflection points of f(x)= x/(x+8)
|
inflection\:points\:f(x)=\frac{x}{x+8}
|
asymptotes of f(x)=(2x-1)/(3x^2)
|
asymptotes\:f(x)=\frac{2x-1}{3x^{2}}
|
line (3,-3)(-3,5)
|
line\:(3,-3)(-3,5)
|
intercepts of f(x)=2x+y=7
|
intercepts\:f(x)=2x+y=7
|
inverse of g(x)=(e^x)/(1+2e^x)
|
inverse\:g(x)=\frac{e^{x}}{1+2e^{x}}
|
distance (5,9)(-7,-7)
|
distance\:(5,9)(-7,-7)
|
domain of x^2+4x+6
|
domain\:x^{2}+4x+6
|
inverse of (4x)/(x+7)
|
inverse\:\frac{4x}{x+7}
|
symmetry y^2=-11x
|
symmetry\:y^{2}=-11x
|
tan(2x)
|
\tan(2x)
|
midpoint (3,5)(6,8)
|
midpoint\:(3,5)(6,8)
|
inverse of f(x)=22.0264997
|
inverse\:f(x)=22.0264997
|
range of 2t
|
range\:2t
|
extreme points of f(x)=2x^3+3x^2-72x
|
extreme\:points\:f(x)=2x^{3}+3x^{2}-72x
|
inverse of f(x)=(16)/x
|
inverse\:f(x)=\frac{16}{x}
|
range of sqrt(x)-3
|
range\:\sqrt{x}-3
|
line (3,5),(5,10)
|
line\:(3,5),(5,10)
|
extreme points of (x^2+9)^3
|
extreme\:points\:(x^{2}+9)^{3}
|
domain of f(x)= 1/(sqrt(x+4))
|
domain\:f(x)=\frac{1}{\sqrt{x+4}}
|
distance (5,-7)(0,3)
|
distance\:(5,-7)(0,3)
|
intercepts of (-x^2+8)/(2x^2-3)
|
intercepts\:\frac{-x^{2}+8}{2x^{2}-3}
|
shift y=3cos(x-1)-3
|
shift\:y=3\cos(x-1)-3
|
range of f(x)=(2x-25)/(3+x)
|
range\:f(x)=\frac{2x-25}{3+x}
|
perpendicular y= 5/3 x+5
|
perpendicular\:y=\frac{5}{3}x+5
|
domain of (9x^2-1)/(9x^3+6x^2+x)
|
domain\:\frac{9x^{2}-1}{9x^{3}+6x^{2}+x}
|
inverse of y=(pi)/4+sin(x)
|
inverse\:y=\frac{\pi}{4}+\sin(x)
|
domain of sqrt(5x+20)
|
domain\:\sqrt{5x+20}
|
inverse of f(x)=22x
|
inverse\:f(x)=22x
|
extreme points of f(x)= x/(x+2)
|
extreme\:points\:f(x)=\frac{x}{x+2}
|
extreme points of f(x)=x^8e^x-6
|
extreme\:points\:f(x)=x^{8}e^{x}-6
|
inverse of f(x)=(-12-2n)/3
|
inverse\:f(x)=\frac{-12-2n}{3}
|
range of f(x)=e^{x+1}
|
range\:f(x)=e^{x+1}
|
parity sin(tan(x))
|
parity\:\sin(\tan(x))
|
inverse of f(x)=-2/x-1
|
inverse\:f(x)=-\frac{2}{x}-1
|