domain of sqrt(x-6)
|
domain\:\sqrt{x-6}
|
domain of 3^{2/(x^2-4)}+1
|
domain\:3^{\frac{2}{x^{2}-4}}+1
|
intercepts of f(x)= 1/3 x^2+6x+10
|
intercepts\:f(x)=\frac{1}{3}x^{2}+6x+10
|
inflection points of (x^2-3x+2)/(x^2-1)
|
inflection\:points\:\frac{x^{2}-3x+2}{x^{2}-1}
|
inverse of theta
|
inverse\:\theta
|
intercepts of f(x)=2x^2-13x-7
|
intercepts\:f(x)=2x^{2}-13x-7
|
intercepts of (2x-2)/(x^3-4x^2+3x)
|
intercepts\:\frac{2x-2}{x^{3}-4x^{2}+3x}
|
midpoint (3,5)(2,-3)
|
midpoint\:(3,5)(2,-3)
|
inverse of f(x)=-2x-4
|
inverse\:f(x)=-2x-4
|
inverse of f(9)=x^2
|
inverse\:f(9)=x^{2}
|
inverse of f(x)=-5-3/2 x
|
inverse\:f(x)=-5-\frac{3}{2}x
|
periodicity of f(x)=sin(x/2)
|
periodicity\:f(x)=\sin(\frac{x}{2})
|
critical points of 6x^2-4x^4
|
critical\:points\:6x^{2}-4x^{4}
|
critical points of f(x)=4x^2-6x
|
critical\:points\:f(x)=4x^{2}-6x
|
parallel 4y+12x=28,\at (-7,-4)
|
parallel\:4y+12x=28,\at\:(-7,-4)
|
inverse of f(x)=8x^7
|
inverse\:f(x)=8x^{7}
|
asymptotes of (x^2)/(x-1)
|
asymptotes\:\frac{x^{2}}{x-1}
|
frequency =-2cot(x+(pi)/4)-3
|
frequency\:=-2\cot(x+\frac{\pi}{4})-3
|
parity f(x)= 1/(2x)
|
parity\:f(x)=\frac{1}{2x}
|
domain of f(x)=1+sqrt(6-7x)
|
domain\:f(x)=1+\sqrt{6-7x}
|
intercepts of (x-4)/(x+5)
|
intercepts\:\frac{x-4}{x+5}
|
domain of (x+1)/(x^2-4)
|
domain\:\frac{x+1}{x^{2}-4}
|
inverse of f(x)=-6+ln(x)
|
inverse\:f(x)=-6+\ln(x)
|
monotone intervals f(x)=x^2e^{-x^2}
|
monotone\:intervals\:f(x)=x^{2}e^{-x^{2}}
|
range of (sqrt(x-3))/(x+2)
|
range\:\frac{\sqrt{x-3}}{x+2}
|
intercepts of-x^3+27x-54
|
intercepts\:-x^{3}+27x-54
|
midpoint (3,2)(-2,6)
|
midpoint\:(3,2)(-2,6)
|
inverse of f9
|
inverse\:f9
|
inverse of f(x)=(6)^x
|
inverse\:f(x)=(6)^{x}
|
inverse of f(x)=6-6x
|
inverse\:f(x)=6-6x
|
domain of (1/2)^{x-3}
|
domain\:(\frac{1}{2})^{x-3}
|
domain of y=6
|
domain\:y=6
|
inverse of f(x)= 1/5 x+2
|
inverse\:f(x)=\frac{1}{5}x+2
|
inverse of f(x)=4x^2-8x+7
|
inverse\:f(x)=4x^{2}-8x+7
|
slope intercept of 8x+2y=6
|
slope\:intercept\:8x+2y=6
|
range of f(x)= x/(9x-7)
|
range\:f(x)=\frac{x}{9x-7}
|
domain of log_{6}(x-1)-5
|
domain\:\log_{6}(x-1)-5
|
midpoint (3,-3)(5,3)
|
midpoint\:(3,-3)(5,3)
|
monotone intervals f(x)=x^2-36
|
monotone\:intervals\:f(x)=x^{2}-36
|
range of cos(2t)
|
range\:\cos(2t)
|
domain of 4-sqrt(x)
|
domain\:4-\sqrt{x}
|
range of-sqrt(-x-1)-3
|
range\:-\sqrt{-x-1}-3
|
asymptotes of f(x)=(x^2+1)/(x^2)
|
asymptotes\:f(x)=\frac{x^{2}+1}{x^{2}}
|
range of f(x)=\sqrt[4]{x-1}
|
range\:f(x)=\sqrt[4]{x-1}
|
inverse of f(x)= 1/3 x+1
|
inverse\:f(x)=\frac{1}{3}x+1
|
inverse of f(x)=sqrt(x^2-2)
|
inverse\:f(x)=\sqrt{x^{2}-2}
|
extreme points of f(x)=0.05x+15+(320)/x
|
extreme\:points\:f(x)=0.05x+15+\frac{320}{x}
|
extreme points of f(x)=x^2(5-4x)^2
|
extreme\:points\:f(x)=x^{2}(5-4x)^{2}
|
domain of 2^x-2
|
domain\:2^{x}-2
|
perpendicular y=4x-7,\at (0,-6)
|
perpendicular\:y=4x-7,\at\:(0,-6)
|
range of f(x)=|x|
|
range\:f(x)=\left|x\right|
|
domain of-log_{2}(x)
|
domain\:-\log_{2}(x)
|
line (-3, 1/32)(3,128)
|
line\:(-3,\frac{1}{32})(3,128)
|
inverse of f(x)=\sqrt[3]{1/3 (x+6)}+5
|
inverse\:f(x)=\sqrt[3]{\frac{1}{3}(x+6)}+5
|
inflection points of (x+1)^{4/5}
|
inflection\:points\:(x+1)^{\frac{4}{5}}
|
extreme points of 2x^2+16x-9
|
extreme\:points\:2x^{2}+16x-9
|
extreme points of f(t)=5<= 1>= 3
|
extreme\:points\:f(t)=5\le\:1\ge\:3
|
critical points of f(x)=sqrt(x-3)
|
critical\:points\:f(x)=\sqrt{x-3}
|
inverse of f(x)=18=\sqrt[3]{x}
|
inverse\:f(x)=18=\sqrt[3]{x}
|
extreme points of f(x)=x^3-3/2 x^2
|
extreme\:points\:f(x)=x^{3}-\frac{3}{2}x^{2}
|
symmetry x^2-7x+10
|
symmetry\:x^{2}-7x+10
|
extreme points of-2-x+x^2
|
extreme\:points\:-2-x+x^{2}
|
intercepts of f(x)=y-3/2
|
intercepts\:f(x)=y-\frac{3}{2}
|
inverse of f(x)=-2/5 x^6+8
|
inverse\:f(x)=-\frac{2}{5}x^{6}+8
|
asymptotes of y=(5e^x)/(e^x-7)
|
asymptotes\:y=\frac{5e^{x}}{e^{x}-7}
|
domain of f(x)=28x^3
|
domain\:f(x)=28x^{3}
|
domain of f(x)=(5x+25)/x
|
domain\:f(x)=\frac{5x+25}{x}
|
line (0,42.4)(1,29.68)
|
line\:(0,42.4)(1,29.68)
|
range of sqrt(3x+9)
|
range\:\sqrt{3x+9}
|
domain of f(x)=x^4
|
domain\:f(x)=x^{4}
|
perpendicular y=4x-3
|
perpendicular\:y=4x-3
|
slope of ((-3-3))/((5-2))
|
slope\:\frac{(-3-3)}{(5-2)}
|
perpendicular y= 2/3 x+c
|
perpendicular\:y=\frac{2}{3}x+c
|
asymptotes of (2x^2-3)/(x^2)
|
asymptotes\:\frac{2x^{2}-3}{x^{2}}
|
midpoint (3,-2)(13,10)
|
midpoint\:(3,-2)(13,10)
|
intercepts of f(x)=3x+y+2=0
|
intercepts\:f(x)=3x+y+2=0
|
asymptotes of f(x)=-x+2
|
asymptotes\:f(x)=-x+2
|
inverse of f(x)=(2-t)^{1/6}
|
inverse\:f(x)=(2-t)^{\frac{1}{6}}
|
inverse of f(x)=e^x-e^{(-x)}
|
inverse\:f(x)=e^{x}-e^{(-x)}
|
inverse of f(x)= 2/3 x-8
|
inverse\:f(x)=\frac{2}{3}x-8
|
inverse of f(x)=x^2+3x+5.2
|
inverse\:f(x)=x^{2}+3x+5.2
|
symmetry f(x)=x^4+x^2
|
symmetry\:f(x)=x^{4}+x^{2}
|
asymptotes of f(x)=(7x)/(sqrt(x^2-10))
|
asymptotes\:f(x)=\frac{7x}{\sqrt{x^{2}-10}}
|
slope of y=-x+5
|
slope\:y=-x+5
|
midpoint (8,-5)(2,3)
|
midpoint\:(8,-5)(2,3)
|
range of (x+2)/(x^2-4)
|
range\:\frac{x+2}{x^{2}-4}
|
inverse of f(x)=15-3x
|
inverse\:f(x)=15-3x
|
inverse of f(x)=((x+3))/2
|
inverse\:f(x)=\frac{(x+3)}{2}
|
range of 2^{x-3}
|
range\:2^{x-3}
|
domain of f(x)= 1/(sqrt(x^2-25))
|
domain\:f(x)=\frac{1}{\sqrt{x^{2}-25}}
|
distance (-5,-2)(5,8)
|
distance\:(-5,-2)(5,8)
|
extreme points of y=(2-3x)/(e^x)
|
extreme\:points\:y=\frac{2-3x}{e^{x}}
|
midpoint (1,0.5)(0.5,2)
|
midpoint\:(1,0.5)(0.5,2)
|
asymptotes of f(x)=sqrt(25x^2-14x)-5x
|
asymptotes\:f(x)=\sqrt{25x^{2}-14x}-5x
|
monotone intervals f(x)=(x+9)/(x-9)
|
monotone\:intervals\:f(x)=\frac{x+9}{x-9}
|
domain of-2x-4
|
domain\:-2x-4
|
inverse of y=-3x+5
|
inverse\:y=-3x+5
|
domain of (sqrt(8-x))
|
domain\:(\sqrt{8-x})
|
inverse of 4+\sqrt[3]{x}
|
inverse\:4+\sqrt[3]{x}
|
y=x^2-24x-12
|
y=x^{2}-24x-12
|