range of sqrt(64-x^2)
|
range\:\sqrt{64-x^{2}}
|
slope intercept of 3x+4y=-12
|
slope\:intercept\:3x+4y=-12
|
domain of 2x^3-4x^2
|
domain\:2x^{3}-4x^{2}
|
extreme points of 3x^4-4x^3+2
|
extreme\:points\:3x^{4}-4x^{3}+2
|
range of sqrt(2+x)
|
range\:\sqrt{2+x}
|
inverse of f(x)=ln((x+1)/(x-2))
|
inverse\:f(x)=\ln(\frac{x+1}{x-2})
|
domain of f(x)=-(3x+1)/(11)
|
domain\:f(x)=-\frac{3x+1}{11}
|
parallel y+5= 1/2 (x-3)
|
parallel\:y+5=\frac{1}{2}(x-3)
|
slope of 5+4x^2-2x^3x=a
|
slope\:5+4x^{2}-2x^{3}x=a
|
domain of f(x)=(1/3)^x
|
domain\:f(x)=(\frac{1}{3})^{x}
|
midpoint (-12,1)(19,3)
|
midpoint\:(-12,1)(19,3)
|
inverse of f(x)=(sqrt(x)-3)/7+6
|
inverse\:f(x)=\frac{\sqrt{x}-3}{7}+6
|
line (150,146.7)(165,162.1)
|
line\:(150,146.7)(165,162.1)
|
domain of \sqrt[3]{x-7}
|
domain\:\sqrt[3]{x-7}
|
range of x^2+5
|
range\:x^{2}+5
|
intercepts of (x^2+6)(36-x^2)
|
intercepts\:(x^{2}+6)(36-x^{2})
|
inverse of 1/x
|
inverse\:\frac{1}{x}
|
intercepts of f(x)=x^3-12x^2+36x-36
|
intercepts\:f(x)=x^{3}-12x^{2}+36x-36
|
critical points of 1/(2x+4)
|
critical\:points\:\frac{1}{2x+4}
|
inflection points of 6x^5-10x^3
|
inflection\:points\:6x^{5}-10x^{3}
|
intercepts of 14
|
intercepts\:14
|
domain of f(x)= 4/((x-2)^2)
|
domain\:f(x)=\frac{4}{(x-2)^{2}}
|
asymptotes of f(x)=2x*arctan(1/x)
|
asymptotes\:f(x)=2x\cdot\:\arctan(\frac{1}{x})
|
symmetry y=3x^2-12x+11
|
symmetry\:y=3x^{2}-12x+11
|
asymptotes of f(x)=(18-3x-x^2)/(x^2-9)
|
asymptotes\:f(x)=\frac{18-3x-x^{2}}{x^{2}-9}
|
inverse of e^{x+2}-3
|
inverse\:e^{x+2}-3
|
domain of y=|x-6|
|
domain\:y=|x-6|
|
slope of y-x=-5
|
slope\:y-x=-5
|
domain of f(x)=sqrt((x+5)/(x-2))
|
domain\:f(x)=\sqrt{\frac{x+5}{x-2}}
|
domain of f(x)=sqrt(x-10)
|
domain\:f(x)=\sqrt{x-10}
|
domain of f(x)=sqrt(x+3)-3
|
domain\:f(x)=\sqrt{x+3}-3
|
domain of f(x)=arccsc(x+6)
|
domain\:f(x)=\arccsc(x+6)
|
asymptotes of f(x)=-3(2)^x
|
asymptotes\:f(x)=-3(2)^{x}
|
domain of f(x)= 3/x
|
domain\:f(x)=\frac{3}{x}
|
periodicity of f(x)=cos(4x)
|
periodicity\:f(x)=\cos(4x)
|
extreme points of (x-3)^{2/3}
|
extreme\:points\:(x-3)^{\frac{2}{3}}
|
parity y=7cos(t)-5t^{cos(t)},0<= t<= 7
|
parity\:y=7\cos(t)-5t^{\cos(t)},0\le\:t\le\:7
|
domain of (3x)/(x^2-x-2)
|
domain\:\frac{3x}{x^{2}-x-2}
|
extreme points of f(x)=sec(x-(pi)/4)
|
extreme\:points\:f(x)=\sec(x-\frac{\pi}{4})
|
periodicity of f(x)=5sin(2x)
|
periodicity\:f(x)=5\sin(2x)
|
critical points of f(x)=6x^2-24x-30
|
critical\:points\:f(x)=6x^{2}-24x-30
|
extreme points of f(x)=x+(100)/x
|
extreme\:points\:f(x)=x+\frac{100}{x}
|
domain of 1/(sqrt(x^2-9x))
|
domain\:\frac{1}{\sqrt{x^{2}-9x}}
|
inverse of (x+3)/(x-3)
|
inverse\:\frac{x+3}{x-3}
|
line (-2,4)(-7,-3)
|
line\:(-2,4)(-7,-3)
|
inverse of f(x)=3+\sqrt[3]{x}
|
inverse\:f(x)=3+\sqrt[3]{x}
|
intercepts of f(x)=x^3-5x^2
|
intercepts\:f(x)=x^{3}-5x^{2}
|
slope intercept of 4-(4y+4x)=6(x-y)
|
slope\:intercept\:4-(4y+4x)=6(x-y)
|
inverse of f(x)=(6x)/(7x-1)
|
inverse\:f(x)=\frac{6x}{7x-1}
|
line m=4,\at (0,6)
|
line\:m=4,\at\:(0,6)
|
intercepts of y= x/(x^2-x)
|
intercepts\:y=\frac{x}{x^{2}-x}
|
inverse of 1/(s^2)
|
inverse\:\frac{1}{s^{2}}
|
inverse of f(x)=(12)/x
|
inverse\:f(x)=\frac{12}{x}
|
inflection points of f(x)=4x^3-6x^2+8x-6
|
inflection\:points\:f(x)=4x^{3}-6x^{2}+8x-6
|
inverse of f(x)=1+sqrt(x-2)
|
inverse\:f(x)=1+\sqrt{x-2}
|
shift-1/2 sin(1/4 x)
|
shift\:-\frac{1}{2}\sin(\frac{1}{4}x)
|
domain of x^2-14x+45
|
domain\:x^{2}-14x+45
|
shift 3tan(x/2)
|
shift\:3\tan(\frac{x}{2})
|
critical points of x^4-14x+20
|
critical\:points\:x^{4}-14x+20
|
intercepts of 3x^2+13x+12
|
intercepts\:3x^{2}+13x+12
|
line (-5,8),(5,0)
|
line\:(-5,8),(5,0)
|
domain of f(x)=ln(e^x-3)
|
domain\:f(x)=\ln(e^{x}-3)
|
critical points of f(x)=x^2-5x+6
|
critical\:points\:f(x)=x^{2}-5x+6
|
asymptotes of (6x)/(x^2-4)
|
asymptotes\:\frac{6x}{x^{2}-4}
|
parity sin(8sec(theta)csc(theta))
|
parity\:\sin(8\sec(\theta)\csc(\theta))
|
domain of f(x)=y=x^2-3
|
domain\:f(x)=y=x^{2}-3
|
inverse of x/(2x+5)
|
inverse\:\frac{x}{2x+5}
|
parity f(x)=-4x+1
|
parity\:f(x)=-4x+1
|
slope of 2x+4y=24
|
slope\:2x+4y=24
|
domain of f(x)= 1/(\sqrt[4]{x^2-9x)}
|
domain\:f(x)=\frac{1}{\sqrt[4]{x^{2}-9x}}
|
range of sqrt(2x-5)
|
range\:\sqrt{2x-5}
|
symmetry x=-1/6 (y-4)^2+6
|
symmetry\:x=-\frac{1}{6}(y-4)^{2}+6
|
periodicity of f(y)= 8/9 cos((pi x)/3)
|
periodicity\:f(y)=\frac{8}{9}\cos(\frac{\pi\:x}{3})
|
intercepts of 1/x
|
intercepts\:\frac{1}{x}
|
domain of f(x)=(x^2+324)/(x^2-324)
|
domain\:f(x)=\frac{x^{2}+324}{x^{2}-324}
|
inflection points of x/(x+2)
|
inflection\:points\:\frac{x}{x+2}
|
domain of 1/([\frac{1){(x-4)}]-4}
|
domain\:\frac{1}{[\frac{1}{(x-4)}]-4}
|
asymptotes of (5x-10)/(x^2+x-12)
|
asymptotes\:\frac{5x-10}{x^{2}+x-12}
|
inverse of f(x)=(x-4)/(5-x)
|
inverse\:f(x)=\frac{x-4}{5-x}
|
domain of f(x)=x^2-1
|
domain\:f(x)=x^{2}-1
|
inverse of (-8)/x
|
inverse\:\frac{-8}{x}
|
critical points of y=(x-3)^{2/3}
|
critical\:points\:y=(x-3)^{\frac{2}{3}}
|
extreme points of sin^2(theta)
|
extreme\:points\:\sin^{2}(\theta)
|
domain of f(x)=(x+3)/(x(x+5))
|
domain\:f(x)=\frac{x+3}{x(x+5)}
|
asymptotes of f(x)=(x^3-1)/(x^2-4x+3)
|
asymptotes\:f(x)=\frac{x^{3}-1}{x^{2}-4x+3}
|
intercepts of f(x)=x+2y=4
|
intercepts\:f(x)=x+2y=4
|
inverse of f(x)=5((((4))/7)^x-2)
|
inverse\:f(x)=5((\frac{(4)}{7})^{x}-2)
|
domain of f(x)=4-2x
|
domain\:f(x)=4-2x
|
range of x^2-6x-7
|
range\:x^{2}-6x-7
|
line m=0,\at (7,5)
|
line\:m=0,\at\:(7,5)
|
intercepts of (3x^2+5x-12)/(x^3-3x^2)
|
intercepts\:\frac{3x^{2}+5x-12}{x^{3}-3x^{2}}
|
asymptotes of f(x)=(x^2-4x+8)/(x+2)
|
asymptotes\:f(x)=\frac{x^{2}-4x+8}{x+2}
|
slope intercept of 5x+10y=-20
|
slope\:intercept\:5x+10y=-20
|
inverse of f(x)=(x+3)^2+2
|
inverse\:f(x)=(x+3)^{2}+2
|
slope intercept of 8x+6y=-6
|
slope\:intercept\:8x+6y=-6
|
range of y=sqrt(x-5)-sqrt(x+5)
|
range\:y=\sqrt{x-5}-\sqrt{x+5}
|
asymptotes of-2/((x-3)^2)
|
asymptotes\:-\frac{2}{(x-3)^{2}}
|
inverse of f(x)=5^{3x+1}
|
inverse\:f(x)=5^{3x+1}
|
midpoint (3,13)(20,3)
|
midpoint\:(3,13)(20,3)
|
inverse of sqrt(5-x)
|
inverse\:\sqrt{5-x}
|