intercepts of 3x^2+6x+2
|
intercepts\:3x^{2}+6x+2
|
inverse of f(x)=8-x
|
inverse\:f(x)=8-x
|
line (2,0)m=3
|
line\:(2,0)m=3
|
domain of f(x)=ln(x-9)
|
domain\:f(x)=\ln(x-9)
|
parity f(-x)=(x^3+3x)/x
|
parity\:f(-x)=\frac{x^{3}+3x}{x}
|
range of f(x)=sqrt(2x-3)
|
range\:f(x)=\sqrt{2x-3}
|
extreme points of f(x)=x^3-2x^2-4x+8
|
extreme\:points\:f(x)=x^{3}-2x^{2}-4x+8
|
perpendicular y=-5x,\at (25,9)
|
perpendicular\:y=-5x,\at\:(25,9)
|
periodicity of 5cos(4x)
|
periodicity\:5\cos(4x)
|
inverse of f(x)=(x-8)/5
|
inverse\:f(x)=\frac{x-8}{5}
|
inverse of f(x)=(x+14)/(x-7)
|
inverse\:f(x)=\frac{x+14}{x-7}
|
domain of (x^2+1)/(x^2-1)
|
domain\:\frac{x^{2}+1}{x^{2}-1}
|
extreme points of f(x)=x^4-24x^2
|
extreme\:points\:f(x)=x^{4}-24x^{2}
|
domain of f(x)=y=(x/(x-1))
|
domain\:f(x)=y=(\frac{x}{x-1})
|
critical points of t/(t-3)
|
critical\:points\:\frac{t}{t-3}
|
range of f(x)=x^2-4x+3
|
range\:f(x)=x^{2}-4x+3
|
intercepts of f(x)=-0.1(x-4)^2+4.2
|
intercepts\:f(x)=-0.1(x-4)^{2}+4.2
|
domain of f(x)=sqrt(9+4x)
|
domain\:f(x)=\sqrt{9+4x}
|
asymptotes of f(x)=x*e^{1/x}
|
asymptotes\:f(x)=x\cdot\:e^{\frac{1}{x}}
|
domain of f(x)=(x+5)/4
|
domain\:f(x)=\frac{x+5}{4}
|
slope intercept of y+5=-1/5 (x+1)
|
slope\:intercept\:y+5=-\frac{1}{5}(x+1)
|
domain of (x-1)/(x+3)
|
domain\:\frac{x-1}{x+3}
|
distance (9,-8),(8,-9)
|
distance\:(9,-8),(8,-9)
|
inverse of f(x)=(125)/(0.5)
|
inverse\:f(x)=\frac{125}{0.5}
|
extreme points of f(x)=x^2-4x+8
|
extreme\:points\:f(x)=x^{2}-4x+8
|
slope of x+5+y=0
|
slope\:x+5+y=0
|
asymptotes of f(x)=2^x+4
|
asymptotes\:f(x)=2^{x}+4
|
slope of 2(1)^4-11(1)^2
|
slope\:2(1)^{4}-11(1)^{2}
|
inflection points of f(x)=(x-4)/(3x-x^2)
|
inflection\:points\:f(x)=\frac{x-4}{3x-x^{2}}
|
asymptotes of 1/(x^2-9)
|
asymptotes\:\frac{1}{x^{2}-9}
|
inverse of f(x)=(x^5-10)^{1/3}
|
inverse\:f(x)=(x^{5}-10)^{\frac{1}{3}}
|
asymptotes of (x^2+2x)/(x-1)
|
asymptotes\:\frac{x^{2}+2x}{x-1}
|
midpoint (1,1)(7,9)
|
midpoint\:(1,1)(7,9)
|
asymptotes of f(x)=(x-5)/(x^2-11x+30)
|
asymptotes\:f(x)=\frac{x-5}{x^{2}-11x+30}
|
domain of 4x+1
|
domain\:4x+1
|
inverse of-3x+1
|
inverse\:-3x+1
|
domain of f(x)=5x^2+4x-9
|
domain\:f(x)=5x^{2}+4x-9
|
inverse of f(x)=-x^2-2,x>= 0
|
inverse\:f(x)=-x^{2}-2,x\ge\:0
|
inverse of f(x)=((x+3))/((x-8))
|
inverse\:f(x)=\frac{(x+3)}{(x-8)}
|
range of (10)/(sqrt(1-x))
|
range\:\frac{10}{\sqrt{1-x}}
|
symmetry 1/4 x^2
|
symmetry\:\frac{1}{4}x^{2}
|
extreme points of (x-1)/(x^2)
|
extreme\:points\:\frac{x-1}{x^{2}}
|
line y=-2x
|
line\:y=-2x
|
asymptotes of f(x)=2x
|
asymptotes\:f(x)=2x
|
extreme points of f(x)=x^4-8x^2+3
|
extreme\:points\:f(x)=x^{4}-8x^{2}+3
|
extreme points of 4x^3-48x
|
extreme\:points\:4x^{3}-48x
|
extreme points of (8-x^3)/(2x^2)
|
extreme\:points\:\frac{8-x^{3}}{2x^{2}}
|
parallel y=x+9
|
parallel\:y=x+9
|
intercepts of f(x)=5x-4y=20
|
intercepts\:f(x)=5x-4y=20
|
asymptotes of e^x
|
asymptotes\:e^{x}
|
inflection points of f(x)=x^5-5x
|
inflection\:points\:f(x)=x^{5}-5x
|
domain of |x-10|
|
domain\:|x-10|
|
range of ln(x)+7
|
range\:\ln(x)+7
|
line (3,-8)(6,-4)
|
line\:(3,-8)(6,-4)
|
line (-3,1)(-1,-2)
|
line\:(-3,1)(-1,-2)
|
intercepts of (12x+65)/((x+4)^2)
|
intercepts\:\frac{12x+65}{(x+4)^{2}}
|
domain of ln(2x-1)
|
domain\:\ln(2x-1)
|
domain of f(x)=sqrt(6x-48)
|
domain\:f(x)=\sqrt{6x-48}
|
symmetry x^2+2x+1
|
symmetry\:x^{2}+2x+1
|
perpendicular-2/3
|
perpendicular\:-\frac{2}{3}
|
midpoint (-3,3)(5,-1)
|
midpoint\:(-3,3)(5,-1)
|
domain of f(x)=((2x+4))/(x-9)
|
domain\:f(x)=\frac{(2x+4)}{x-9}
|
inverse of f(x)=-x^2+2
|
inverse\:f(x)=-x^{2}+2
|
asymptotes of (4(x-1))/((x+1)(x-1))
|
asymptotes\:\frac{4(x-1)}{(x+1)(x-1)}
|
inflection points of f(x)=6x-ln(6x)
|
inflection\:points\:f(x)=6x-\ln(6x)
|
parity y=(8x)/(3-tan(x))
|
parity\:y=\frac{8x}{3-\tan(x)}
|
asymptotes of f(x)=(3x-15)/(x^2-7x+10)
|
asymptotes\:f(x)=\frac{3x-15}{x^{2}-7x+10}
|
asymptotes of f(x)=(4e^x)/(1+e^{-x)}
|
asymptotes\:f(x)=\frac{4e^{x}}{1+e^{-x}}
|
domain of f(x)=sqrt(1-\sqrt{x)}
|
domain\:f(x)=\sqrt{1-\sqrt{x}}
|
intercepts of y=3x
|
intercepts\:y=3x
|
domain of f(x)=(x^2+1)\div (x+3)
|
domain\:f(x)=(x^{2}+1)\div\:(x+3)
|
inverse of f(x)= 1/3 x^3-2
|
inverse\:f(x)=\frac{1}{3}x^{3}-2
|
inverse of x^2-6x
|
inverse\:x^{2}-6x
|
shift 3+2sin(6x+(pi)/4)
|
shift\:3+2\sin(6x+\frac{\pi}{4})
|
range of-3x^2+3x-2
|
range\:-3x^{2}+3x-2
|
slope intercept of 3y+6x=6
|
slope\:intercept\:3y+6x=6
|
range of f(x)=2-log_{3}(x+1)
|
range\:f(x)=2-\log_{3}(x+1)
|
domain of sqrt(x)-x
|
domain\:\sqrt{x}-x
|
inverse of f(x)= x/2+8
|
inverse\:f(x)=\frac{x}{2}+8
|
domain of f(x)=sqrt(x^2-7)
|
domain\:f(x)=\sqrt{x^{2}-7}
|
inverse of f(x)=(x-5)^2,x>= 5
|
inverse\:f(x)=(x-5)^{2},x\ge\:5
|
inverse of f(x)= 2/(x-6)
|
inverse\:f(x)=\frac{2}{x-6}
|
inverse of f(x)=(3x)/(x+2)
|
inverse\:f(x)=\frac{3x}{x+2}
|
inverse of f(x)= 1/4 (x-2)^2
|
inverse\:f(x)=\frac{1}{4}(x-2)^{2}
|
domain of f(x)=-x^2+36
|
domain\:f(x)=-x^{2}+36
|
range of (sqrt(1-x^2))/(x^2-9)
|
range\:\frac{\sqrt{1-x^{2}}}{x^{2}-9}
|
range of f(x)=sin^3(x)
|
range\:f(x)=\sin^{3}(x)
|
domain of (-3-sqrt(4x+25))/2
|
domain\:\frac{-3-\sqrt{4x+25}}{2}
|
inverse of f(x)=2x-10
|
inverse\:f(x)=2x-10
|
domain of f(x)=ln(t+5)
|
domain\:f(x)=\ln(t+5)
|
domain of f(x)=2x-x^2-17
|
domain\:f(x)=2x-x^{2}-17
|
y=3x-4
|
y=3x-4
|
domain of f(x)=(x+6)/((x-7)(x+5))
|
domain\:f(x)=\frac{x+6}{(x-7)(x+5)}
|
intercepts of (x^2+x-2)/(x+1)
|
intercepts\:\frac{x^{2}+x-2}{x+1}
|
inverse of arcsec(x)
|
inverse\:\arcsec(x)
|
f(x)= 3/4 x-1
|
f(x)=\frac{3}{4}x-1
|
domain of (x+7)/(x^2-9)
|
domain\:\frac{x+7}{x^{2}-9}
|
slope of 4x-3y=4
|
slope\:4x-3y=4
|
inverse of f(x)=x^2+7
|
inverse\:f(x)=x^{2}+7
|
inverse of f(x)=((-4x+9))/(6+7x)
|
inverse\:f(x)=\frac{(-4x+9)}{6+7x}
|