symmetry y=x^2-4x-5
|
symmetry\:y=x^{2}-4x-5
|
range of f(x)=1+x^2
|
range\:f(x)=1+x^{2}
|
symmetry-3x^2+5x+4
|
symmetry\:-3x^{2}+5x+4
|
domain of f(x)=(x^2-2x+1)/(5-x)
|
domain\:f(x)=\frac{x^{2}-2x+1}{5-x}
|
slope intercept of-5x+10y=20
|
slope\:intercept\:-5x+10y=20
|
asymptotes of ((x^3+27))/(x^2+4)
|
asymptotes\:\frac{(x^{3}+27)}{x^{2}+4}
|
inverse of f(x)=(x+2)/x
|
inverse\:f(x)=\frac{x+2}{x}
|
asymptotes of (5x+10)/(-2x^2-6x-4)
|
asymptotes\:\frac{5x+10}{-2x^{2}-6x-4}
|
critical points of sin(6x),0<= x<= 2pi
|
critical\:points\:\sin(6x),0\le\:x\le\:2\pi
|
parallel y=6x-5
|
parallel\:y=6x-5
|
symmetry y=(x+3)(x-1)
|
symmetry\:y=(x+3)(x-1)
|
extreme points of f(x)=x+(25)/x
|
extreme\:points\:f(x)=x+\frac{25}{x}
|
parity sqrt(1+x^{2/3)-x}
|
parity\:\sqrt{1+x^{\frac{2}{3}}-x}
|
range of f(x)=3(1/4)^x
|
range\:f(x)=3(\frac{1}{4})^{x}
|
range of-3x^{1-x}-2
|
range\:-3x^{1-x}-2
|
symmetry-2x^3+2x+1
|
symmetry\:-2x^{3}+2x+1
|
domain of f(x)=4x^2-2x-12
|
domain\:f(x)=4x^{2}-2x-12
|
slope intercept of-3x+5y=15
|
slope\:intercept\:-3x+5y=15
|
extreme points of y=(2-x)
|
extreme\:points\:y=(2-x)
|
intercepts of f(x)=4x-6y=24
|
intercepts\:f(x)=4x-6y=24
|
midpoint (2,-5)(10,5)
|
midpoint\:(2,-5)(10,5)
|
symmetry y=x^3-2x
|
symmetry\:y=x^{3}-2x
|
inverse of f(x)=\sqrt[3]{x-9}+4
|
inverse\:f(x)=\sqrt[3]{x-9}+4
|
range of 1/3 x-7/3
|
range\:\frac{1}{3}x-\frac{7}{3}
|
asymptotes of 2
|
asymptotes\:2
|
inverse of f(x)=x-3
|
inverse\:f(x)=x-3
|
inverse of f(x)=e^x\div (1+7e^x)
|
inverse\:f(x)=e^{x}\div\:(1+7e^{x})
|
y=2x+3
|
y=2x+3
|
asymptotes of y=(x+3)/(x^4-81)
|
asymptotes\:y=\frac{x+3}{x^{4}-81}
|
domain of h(x)=(x^2+7)/(x^2+2x-48)
|
domain\:h(x)=\frac{x^{2}+7}{x^{2}+2x-48}
|
critical points of (2x^2-5x+5)/(x-2)
|
critical\:points\:\frac{2x^{2}-5x+5}{x-2}
|
shift cos(x)-1
|
shift\:\cos(x)-1
|
domain of f(x)=sqrt(36-x)
|
domain\:f(x)=\sqrt{36-x}
|
domain of x/(-x-2)
|
domain\:\frac{x}{-x-2}
|
y=1-x^2
|
y=1-x^{2}
|
distance (-6, 5/13)(6, 5/13)
|
distance\:(-6,\frac{5}{13})(6,\frac{5}{13})
|
domain of f(x)=ln(x)+5
|
domain\:f(x)=\ln(x)+5
|
domain of f(x)=(|x-2|+|x+2|)/x
|
domain\:f(x)=\frac{|x-2|+|x+2|}{x}
|
midpoint (6,2)(10,4)
|
midpoint\:(6,2)(10,4)
|
range of f(x)= 3/(x+1)
|
range\:f(x)=\frac{3}{x+1}
|
line (2,-9)(4,1)
|
line\:(2,-9)(4,1)
|
inverse of 1/2 (x-1)^3+3
|
inverse\:\frac{1}{2}(x-1)^{3}+3
|
periodicity of-6sin(3x+(pi)/2)
|
periodicity\:-6\sin(3x+\frac{\pi}{2})
|
domain of f(x)=(3x-4)/(x^2-7x+12)
|
domain\:f(x)=\frac{3x-4}{x^{2}-7x+12}
|
domain of f(x)=((9/x))/((9/x)+9)
|
domain\:f(x)=\frac{(\frac{9}{x})}{(\frac{9}{x})+9}
|
range of-2x^2-2x-2
|
range\:-2x^{2}-2x-2
|
parity f(-1)=(tan(x+2))/((x+2)^2)
|
parity\:f(-1)=\frac{\tan(x+2)}{(x+2)^{2}}
|
periodicity of f(x)=2sin(3x-pi)+4
|
periodicity\:f(x)=2\sin(3x-\pi)+4
|
midpoint (-1,-6)(3,0)
|
midpoint\:(-1,-6)(3,0)
|
slope of H=-0.65(t+20)+143
|
slope\:H=-0.65(t+20)+143
|
range of f(x)=3x+5
|
range\:f(x)=3x+5
|
inverse of f(x)=3-sqrt(x-5)
|
inverse\:f(x)=3-\sqrt{x-5}
|
vertex f(x)=y=2x^2-2
|
vertex\:f(x)=y=2x^{2}-2
|
asymptotes of f(x)=(x^2+7x)/(x^2-2x-8)
|
asymptotes\:f(x)=\frac{x^{2}+7x}{x^{2}-2x-8}
|
extreme points of f(x)=x^3-4x^2+10
|
extreme\:points\:f(x)=x^{3}-4x^{2}+10
|
intercepts of f(x)=19x^2+4y=76
|
intercepts\:f(x)=19x^{2}+4y=76
|
midpoint (5,2)(2,-1)
|
midpoint\:(5,2)(2,-1)
|
inverse of f(x)=sqrt(-1-x)
|
inverse\:f(x)=\sqrt{-1-x}
|
line (0,1),(9,10)
|
line\:(0,1),(9,10)
|
domain of f(x)=-2x+7
|
domain\:f(x)=-2x+7
|
domain of 16-(20x+15)^2
|
domain\:16-(20x+15)^{2}
|
inverse of f(x)= 2/3 x-5
|
inverse\:f(x)=\frac{2}{3}x-5
|
inverse of f(x)=2^{x+4}-3
|
inverse\:f(x)=2^{x+4}-3
|
range of f(x)=-2-x^2
|
range\:f(x)=-2-x^{2}
|
asymptotes of f(x)=-(16)/x
|
asymptotes\:f(x)=-\frac{16}{x}
|
domain of f(x)=(sqrt(x+3))/(x^2-4)
|
domain\:f(x)=\frac{\sqrt{x+3}}{x^{2}-4}
|
line (-5,1),(-2.5,6)
|
line\:(-5,1),(-2.5,6)
|
range of (5x-2)/(x+9)
|
range\:\frac{5x-2}{x+9}
|
intercepts of f(x)=x^2-20x+100
|
intercepts\:f(x)=x^{2}-20x+100
|
asymptotes of f(x)=(0.052x)/(0.9+0.048x)
|
asymptotes\:f(x)=(0.052x)/(0.9+0.048x)
|
critical points of 1/3 x^3+2x^2-2
|
critical\:points\:\frac{1}{3}x^{3}+2x^{2}-2
|
inverse of (2x)/(x^2+81)
|
inverse\:\frac{2x}{x^{2}+81}
|
parity sqrt(x^3-12x^2+36x+8)
|
parity\:\sqrt{x^{3}-12x^{2}+36x+8}
|
shift y=sin(x+2)
|
shift\:y=\sin(x+2)
|
perpendicular y= 1/7 x+9,(2,5)
|
perpendicular\:y=\frac{1}{7}x+9,(2,5)
|
intercepts of f(x)=3x-4y=-8
|
intercepts\:f(x)=3x-4y=-8
|
domain of f(x)=1.5(2)^x
|
domain\:f(x)=1.5(2)^{x}
|
domain of f(x)=(sqrt(x-1))/((x+2)(x-3))
|
domain\:f(x)=\frac{\sqrt{x-1}}{(x+2)(x-3)}
|
extreme points of f(x)=sin(7x)
|
extreme\:points\:f(x)=\sin(7x)
|
domain of f(x)= 7/2 x-25/2
|
domain\:f(x)=\frac{7}{2}x-\frac{25}{2}
|
inverse of f(x)=x^2+6x+4
|
inverse\:f(x)=x^{2}+6x+4
|
slope of y= 7/2 x-2
|
slope\:y=\frac{7}{2}x-2
|
inverse of (3x+8)/(2x-3)
|
inverse\:\frac{3x+8}{2x-3}
|
domain of f(x)=(1-4t)/(6+t)
|
domain\:f(x)=\frac{1-4t}{6+t}
|
inverse of (3x)/(5x-3)
|
inverse\:\frac{3x}{5x-3}
|
inverse of x-5
|
inverse\:x-5
|
inflection points of f(x)=18x^{2/3}-6x
|
inflection\:points\:f(x)=18x^{\frac{2}{3}}-6x
|
domain of f(x)=x^6
|
domain\:f(x)=x^{6}
|
asymptotes of x^2+3
|
asymptotes\:x^{2}+3
|
slope intercept of y+3=-1/4 (x+2)
|
slope\:intercept\:y+3=-\frac{1}{4}(x+2)
|
asymptotes of (6x+9)/(x-1)
|
asymptotes\:\frac{6x+9}{x-1}
|
inverse of f(x)=((4-x))/x
|
inverse\:f(x)=\frac{(4-x)}{x}
|
inverse of log_{2}(x)
|
inverse\:\log_{2}(x)
|
asymptotes of f(x)=(x^2-4)/x
|
asymptotes\:f(x)=\frac{x^{2}-4}{x}
|
inverse of f(x)=(9x)/(x-4)
|
inverse\:f(x)=\frac{9x}{x-4}
|
critical points of 2xe^x+e^xx^2
|
critical\:points\:2xe^{x}+e^{x}x^{2}
|
domain of f(x)=2x^2-3x< 0sqrt(2x)x> 0
|
domain\:f(x)=2x^{2}-3x\lt\:0\sqrt{2x}x\gt\:0
|
inverse of f(a+2)
|
inverse\:f(a+2)
|
range of f(x)=log_{8}(x)
|
range\:f(x)=\log_{8}(x)
|
extreme points of x^2+3x+3
|
extreme\:points\:x^{2}+3x+3
|