inverse of f(x)=14
|
inverse\:f(x)=14
|
inverse of 5-sqrt(x-2)
|
inverse\:5-\sqrt{x-2}
|
inverse of f(x)= 1/(x+2)-1
|
inverse\:f(x)=\frac{1}{x+2}-1
|
domain of sqrt(x^2-4x-5)
|
domain\:\sqrt{x^{2}-4x-5}
|
inverse of f(x)= 3/8 x-4
|
inverse\:f(x)=\frac{3}{8}x-4
|
slope intercept of 3y-9x=21
|
slope\:intercept\:3y-9x=21
|
range of f(x)=sqrt(x+2)
|
range\:f(x)=\sqrt{x+2}
|
distance (4,3)(0,3)
|
distance\:(4,3)(0,3)
|
inverse of f(x)=4x^3-7
|
inverse\:f(x)=4x^{3}-7
|
slope intercept of 5x-2y=8
|
slope\:intercept\:5x-2y=8
|
domain of (2x^2+x-1)/(3x^2-11x-4)
|
domain\:\frac{2x^{2}+x-1}{3x^{2}-11x-4}
|
line (0,5)(6,0)
|
line\:(0,5)(6,0)
|
line (-8,-1)\land (-1,-2)
|
line\:(-8,-1)\land\:(-1,-2)
|
slope intercept of 6x-7y-14=0
|
slope\:intercept\:6x-7y-14=0
|
inverse of f(x)= 2/(x^2+1)
|
inverse\:f(x)=\frac{2}{x^{2}+1}
|
critical points of f(x)=x^3+3x^2-3
|
critical\:points\:f(x)=x^{3}+3x^{2}-3
|
asymptotes of f(x)=(x-7)/(x+5)
|
asymptotes\:f(x)=\frac{x-7}{x+5}
|
line m=0(6,-7)
|
line\:m=0(6,-7)
|
asymptotes of f(x)=(x+3)/(x(x+9))
|
asymptotes\:f(x)=\frac{x+3}{x(x+9)}
|
inverse of y=x+4
|
inverse\:y=x+4
|
domain of (-e^{-x})/(1+e^{-x)}
|
domain\:\frac{-e^{-x}}{1+e^{-x}}
|
domain of f(x)=(3+4x)/(x-1)
|
domain\:f(x)=\frac{3+4x}{x-1}
|
inverse of f(x)=x^2-9,x>= 0
|
inverse\:f(x)=x^{2}-9,x\ge\:0
|
inflection points of f(x)=x^4-4x^3+3
|
inflection\:points\:f(x)=x^{4}-4x^{3}+3
|
perpendicular y=-3/4 x
|
perpendicular\:y=-\frac{3}{4}x
|
domain of x^2+4x-12
|
domain\:x^{2}+4x-12
|
inverse of f(x)=8x^3+1
|
inverse\:f(x)=8x^{3}+1
|
inverse of f(x)= 1/(x-2)
|
inverse\:f(x)=\frac{1}{x-2}
|
inverse of f(x)= 2/3 x+2
|
inverse\:f(x)=\frac{2}{3}x+2
|
domain of f(x)=4x-3x^2
|
domain\:f(x)=4x-3x^{2}
|
domain of f(x)=3x-1
|
domain\:f(x)=3x-1
|
inverse of f(x)=(x-8)/7
|
inverse\:f(x)=\frac{x-8}{7}
|
domain of f(x)=2x+9
|
domain\:f(x)=2x+9
|
domain of f(x)=1+ln(-x)
|
domain\:f(x)=1+\ln(-x)
|
slope of y=x-2
|
slope\:y=x-2
|
domain of f(x)=(sqrt(81-x^2))/(x^2-9)=y
|
domain\:f(x)=\frac{\sqrt{81-x^{2}}}{x^{2}-9}=y
|
extreme points of f(x)=-12x^2+4x
|
extreme\:points\:f(x)=-12x^{2}+4x
|
inverse of f(x)=(3x)/(5+x^2)
|
inverse\:f(x)=\frac{3x}{5+x^{2}}
|
inverse of y=5x+6x^2
|
inverse\:y=5x+6x^{2}
|
inverse of f(x)=e^{8x-9}
|
inverse\:f(x)=e^{8x-9}
|
asymptotes of f(x)=(x-2)/(x+3)
|
asymptotes\:f(x)=\frac{x-2}{x+3}
|
monotone intervals f(x)=e^{-2x^2}
|
monotone\:intervals\:f(x)=e^{-2x^{2}}
|
shift-3/2 cos(3x-1/2)+2
|
shift\:-\frac{3}{2}\cos(3x-\frac{1}{2})+2
|
symmetry f(x)=x^2-2x+1
|
symmetry\:f(x)=x^{2}-2x+1
|
asymptotes of f(x)=(x^4-324)/(x^2-18)
|
asymptotes\:f(x)=\frac{x^{4}-324}{x^{2}-18}
|
domain of f(x)=(x^2)/(x^2+9)
|
domain\:f(x)=\frac{x^{2}}{x^{2}+9}
|
critical points of f(x)=x^3+3x^2-189x
|
critical\:points\:f(x)=x^{3}+3x^{2}-189x
|
inverse of f(x)= 1/2 x-5
|
inverse\:f(x)=\frac{1}{2}x-5
|
inverse of f(x)=e^{y-1}
|
inverse\:f(x)=e^{y-1}
|
extreme points of f(x)=(6x-10)/(x^2-1)
|
extreme\:points\:f(x)=\frac{6x-10}{x^{2}-1}
|
inverse of f(x)= 3/7 x-6
|
inverse\:f(x)=\frac{3}{7}x-6
|
domain of 1/(-x+4)
|
domain\:\frac{1}{-x+4}
|
extreme points of f(x)=x^3-4x^2-16x-3
|
extreme\:points\:f(x)=x^{3}-4x^{2}-16x-3
|
asymptotes of f(x)= 1/((x+1)^2)+2
|
asymptotes\:f(x)=\frac{1}{(x+1)^{2}}+2
|
domain of f(x)=-x^2-1
|
domain\:f(x)=-x^{2}-1
|
intercepts of (2x)/(9-x^2)
|
intercepts\:\frac{2x}{9-x^{2}}
|
slope intercept of 8x-4y=16
|
slope\:intercept\:8x-4y=16
|
asymptotes of f(x)=(2x+3)/(x^3)
|
asymptotes\:f(x)=\frac{2x+3}{x^{3}}
|
inverse of f(x)=sqrt(x)-9
|
inverse\:f(x)=\sqrt{x}-9
|
slope intercept of 5x+y=3
|
slope\:intercept\:5x+y=3
|
slope intercept of x-4y=6
|
slope\:intercept\:x-4y=6
|
critical points of 3x^2-12x+9
|
critical\:points\:3x^{2}-12x+9
|
range of f(x)=x^2-6x+9
|
range\:f(x)=x^{2}-6x+9
|
domain of f(x)=((2x+4))/(x^2-x-12)
|
domain\:f(x)=\frac{(2x+4)}{x^{2}-x-12}
|
domain of f(x)=sqrt(4-x^2)
|
domain\:f(x)=\sqrt{4-x^{2}}
|
extreme points of x^3-3x+1
|
extreme\:points\:x^{3}-3x+1
|
domain of f(x)=(x(x+1))/(x-1)
|
domain\:f(x)=\frac{x(x+1)}{x-1}
|
domain of f(x)=3x-x^2
|
domain\:f(x)=3x-x^{2}
|
symmetry y=x^3+2
|
symmetry\:y=x^{3}+2
|
intercepts of f(x)=2x-3y=-3
|
intercepts\:f(x)=2x-3y=-3
|
critical points of f(x)=x(x-2)
|
critical\:points\:f(x)=x(x-2)
|
domain of (x-4)/(x+4)
|
domain\:\frac{x-4}{x+4}
|
range of |x-2|+3
|
range\:|x-2|+3
|
inverse of f(x)=(x+2)3
|
inverse\:f(x)=(x+2)3
|
inverse of f(x)=-6x^2
|
inverse\:f(x)=-6x^{2}
|
inverse of f(x)=-3/((x+8))
|
inverse\:f(x)=-\frac{3}{(x+8)}
|
asymptotes of ((x^2))/(x-7)
|
asymptotes\:\frac{(x^{2})}{x-7}
|
domain of f(x)=7x-9
|
domain\:f(x)=7x-9
|
distance (3,-1),(5,6)
|
distance\:(3,-1),(5,6)
|
asymptotes of f(x)=(x^3-8)/(x^2-36)
|
asymptotes\:f(x)=\frac{x^{3}-8}{x^{2}-36}
|
periodicity of f(x)=4cos(4/3 x)
|
periodicity\:f(x)=4\cos(\frac{4}{3}x)
|
domain of f(x)=x^2-2x-5
|
domain\:f(x)=x^{2}-2x-5
|
domain of f(x)= x/(x^2-4x+3)
|
domain\:f(x)=\frac{x}{x^{2}-4x+3}
|
inverse of f(x)=sqrt(x)-3
|
inverse\:f(x)=\sqrt{x}-3
|
inverse of 1-sqrt(x+2)
|
inverse\:1-\sqrt{x+2}
|
range of 2x^2-x-6
|
range\:2x^{2}-x-6
|
intercepts of f(x)=x^3-64x
|
intercepts\:f(x)=x^{3}-64x
|
shift f(x)=2sin(3x-2)+5
|
shift\:f(x)=2\sin(3x-2)+5
|
line (9,4)\land (-3,3)
|
line\:(9,4)\land\:(-3,3)
|
asymptotes of (4x-20)/(x^2-2x-15)
|
asymptotes\:\frac{4x-20}{x^{2}-2x-15}
|
domain of f(x)=sqrt(x-2)
|
domain\:f(x)=\sqrt{x-2}
|
intercepts of 2x^3-10x^2-8x+40
|
intercepts\:2x^{3}-10x^{2}-8x+40
|
domain of f(x)=(sqrt(x+9))/(x-5)
|
domain\:f(x)=\frac{\sqrt{x+9}}{x-5}
|
inverse of 6x+6
|
inverse\:6x+6
|
intercepts of (x^2-2x-15)/(x^2+4x)
|
intercepts\:\frac{x^{2}-2x-15}{x^{2}+4x}
|
inverse of f(x)=(x+2)^2,x>=-2
|
inverse\:f(x)=(x+2)^{2},x\ge\:-2
|
slope intercept of y-4= 1/4 (x+8)
|
slope\:intercept\:y-4=\frac{1}{4}(x+8)
|
domain of x^2+3x+3
|
domain\:x^{2}+3x+3
|
monotone intervals y=3x^3-16x+2
|
monotone\:intervals\:y=3x^{3}-16x+2
|
line (2.25,0.65),(3,1)
|
line\:(2.25,0.65),(3,1)
|