extreme points of f(x)=-x^2+3x,[-1,3]
|
extreme\:points\:f(x)=-x^{2}+3x,[-1,3]
|
domain of f(x)=(x^2+1)/x
|
domain\:f(x)=\frac{x^{2}+1}{x}
|
intercepts of (x^2-x-6)/(x-2)
|
intercepts\:\frac{x^{2}-x-6}{x-2}
|
domain of f(x)=y=sqrt(x+3)
|
domain\:f(x)=y=\sqrt{x+3}
|
domain of f(x)=(x-1)/x
|
domain\:f(x)=\frac{x-1}{x}
|
domain of 1/(6x-12)sqrt(2x+16)
|
domain\:\frac{1}{6x-12}\sqrt{2x+16}
|
range of f(x)=4x^2-2x,(1,4)
|
range\:f(x)=4x^{2}-2x,(1,4)
|
distance (0,8)(4,0)
|
distance\:(0,8)(4,0)
|
midpoint (-4,2)(5,6)
|
midpoint\:(-4,2)(5,6)
|
inverse of f(x)=y=-5x+9
|
inverse\:f(x)=y=-5x+9
|
asymptotes of f(x)= 1/(x^3-x)
|
asymptotes\:f(x)=\frac{1}{x^{3}-x}
|
extreme points of 1/(x+2)
|
extreme\:points\:\frac{1}{x+2}
|
domain of f(x)=(6x-1)/(3x-1)
|
domain\:f(x)=\frac{6x-1}{3x-1}
|
perpendicular 4x+5y=7(4,-3)
|
perpendicular\:4x+5y=7(4,-3)
|
line (-4,2)(4,0)
|
line\:(-4,2)(4,0)
|
domain of f(x)=(sqrt(x-3))/(x^2-16)
|
domain\:f(x)=\frac{\sqrt{x-3}}{x^{2}-16}
|
range of f(x)=sqrt((x-1)/(x+3))
|
range\:f(x)=\sqrt{\frac{x-1}{x+3}}
|
critical points of x^2(x-10)^3
|
critical\:points\:x^{2}(x-10)^{3}
|
domain of y= 5/(2x^{3/2)}
|
domain\:y=\frac{5}{2x^{\frac{3}{2}}}
|
extreme points of f(x)=cos(5x)+sqrt(3)sin(5x)
|
extreme\:points\:f(x)=\cos(5x)+\sqrt{3}\sin(5x)
|
inverse of f(x)=\sqrt[5]{x-1}
|
inverse\:f(x)=\sqrt[5]{x-1}
|
domain of f(x)=(x-3)/(x^2-x-2)
|
domain\:f(x)=\frac{x-3}{x^{2}-x-2}
|
extreme points of 2x^2-x-1
|
extreme\:points\:2x^{2}-x-1
|
critical points of f(x)=e^xsqrt(x)
|
critical\:points\:f(x)=e^{x}\sqrt{x}
|
asymptotes of f(x)=(x^2+4)/(x-2)
|
asymptotes\:f(x)=\frac{x^{2}+4}{x-2}
|
inverse of-2x^2+6
|
inverse\:-2x^{2}+6
|
domain of arccos(e^x)
|
domain\:\arccos(e^{x})
|
critical points of f(x)=(x-1)^{4/5}
|
critical\:points\:f(x)=(x-1)^{\frac{4}{5}}
|
asymptotes of f(x)=ln(x^2-4)
|
asymptotes\:f(x)=\ln(x^{2}-4)
|
domain of (x-1)/(1+x^2)
|
domain\:\frac{x-1}{1+x^{2}}
|
domain of f(x)=(sqrt(x+7))/(x-8)
|
domain\:f(x)=\frac{\sqrt{x+7}}{x-8}
|
domain of f(x)=x^2+6x+4
|
domain\:f(x)=x^{2}+6x+4
|
range of sqrt(x^2-7x)
|
range\:\sqrt{x^{2}-7x}
|
inverse of f(x)= 1/4 (x+3)^2-5
|
inverse\:f(x)=\frac{1}{4}(x+3)^{2}-5
|
slope of x^2+12x=-36
|
slope\:x^{2}+12x=-36
|
domain of f(x)=(4x+7)/(x^2+12x+27)
|
domain\:f(x)=\frac{4x+7}{x^{2}+12x+27}
|
inverse of f(x)=10x+7
|
inverse\:f(x)=10x+7
|
parity f(x)=sqrt(x+1)
|
parity\:f(x)=\sqrt{x+1}
|
domain of h(x)=sqrt(20x^2+7x-3)
|
domain\:h(x)=\sqrt{20x^{2}+7x-3}
|
inverse of y=log_{3}(x)+6
|
inverse\:y=\log_{3}(x)+6
|
intercepts of f(x)=-2x^2+20x-50
|
intercepts\:f(x)=-2x^{2}+20x-50
|
parity y=2x-cot^2(x)
|
parity\:y=2x-\cot^{2}(x)
|
domain of ((3x^2-2x))/((x^2-x+2))
|
domain\:\frac{(3x^{2}-2x)}{(x^{2}-x+2)}
|
range of log_{2}(1/(2^{-1/2)})
|
range\:\log_{2}(\frac{1}{2^{-\frac{1}{2}}})
|
symmetry x^2y-9y-3x^2=0
|
symmetry\:x^{2}y-9y-3x^{2}=0
|
parity f(x)=-x^2+8
|
parity\:f(x)=-x^{2}+8
|
extreme points of f(x)=(x+5)^{2/3}
|
extreme\:points\:f(x)=(x+5)^{\frac{2}{3}}
|
domain of x^2-6
|
domain\:x^{2}-6
|
inverse of f(x)=(2x-1)/(6-5x)
|
inverse\:f(x)=\frac{2x-1}{6-5x}
|
slope of y= 2/3 x-3
|
slope\:y=\frac{2}{3}x-3
|
inverse of f(x)=(sqrt(x+1))/(sqrt(x-2))
|
inverse\:f(x)=\frac{\sqrt{x+1}}{\sqrt{x-2}}
|
intercepts of f(x)=sqrt(x)-2
|
intercepts\:f(x)=\sqrt{x}-2
|
symmetry x^2+2x-2
|
symmetry\:x^{2}+2x-2
|
slope of y=-3(x-4)+5(2x-1)
|
slope\:y=-3(x-4)+5(2x-1)
|
symmetry x^2-6x+5
|
symmetry\:x^{2}-6x+5
|
inverse of f(x)=-2x-10
|
inverse\:f(x)=-2x-10
|
inverse of \sqrt[3]{4x}-3
|
inverse\:\sqrt[3]{4x}-3
|
domain of (x+6)/(x^2+3x-4)
|
domain\:(x+6)/(x^{2}+3x-4)
|
inverse of f(x)= x/8+3
|
inverse\:f(x)=\frac{x}{8}+3
|
domain of f(x)=x^2-12x+27
|
domain\:f(x)=x^{2}-12x+27
|
slope intercept of y= 3/4 x+1
|
slope\:intercept\:y=\frac{3}{4}x+1
|
inverse of f(x)=8x^3+5
|
inverse\:f(x)=8x^{3}+5
|
perpendicular y=-2x+7
|
perpendicular\:y=-2x+7
|
inverse of 216^x
|
inverse\:216^{x}
|
domain of f(x)=-5x+7
|
domain\:f(x)=-5x+7
|
inverse of f(x)=7x^2+5
|
inverse\:f(x)=7x^{2}+5
|
domain of f(x)=sqrt(2)x-7
|
domain\:f(x)=\sqrt{2}x-7
|
domain of f(x)=(11x-5)/(\sqrt[4]{4-x^2)}
|
domain\:f(x)=\frac{11x-5}{\sqrt[4]{4-x^{2}}}
|
intercepts of f(x)=2x^2-2
|
intercepts\:f(x)=2x^{2}-2
|
inverse of 5(sqrt(x)+5)-9
|
inverse\:5(\sqrt{x}+5)-9
|
domain of (5-x)/(x(x-4))
|
domain\:\frac{5-x}{x(x-4)}
|
perpendicular y=-1/7 x-4
|
perpendicular\:y=-\frac{1}{7}x-4
|
range of y=sqrt(x+8)
|
range\:y=\sqrt{x+8}
|
domain of f(x)=-7x+1
|
domain\:f(x)=-7x+1
|
inverse of f(x)=(2x+5)^3-6
|
inverse\:f(x)=(2x+5)^{3}-6
|
range of f(x)=2x^2-8x+9
|
range\:f(x)=2x^{2}-8x+9
|
range of x^2-4x-21
|
range\:x^{2}-4x-21
|
domain of sqrt(x)+sqrt(1-x)
|
domain\:\sqrt{x}+\sqrt{1-x}
|
asymptotes of f(x)= 1/2 \sqrt[4]{x}
|
asymptotes\:f(x)=\frac{1}{2}\sqrt[4]{x}
|
inverse of f(x)=sqrt(2x-5)
|
inverse\:f(x)=\sqrt{2x-5}
|
intercepts of f(x)=2x^3-1
|
intercepts\:f(x)=2x^{3}-1
|
extreme points of 9x^2-x^3-3
|
extreme\:points\:9x^{2}-x^{3}-3
|
inverse of f(x)=7x+1
|
inverse\:f(x)=7x+1
|
extreme points of f(x)=-3x^4+24x^3-30x^2
|
extreme\:points\:f(x)=-3x^{4}+24x^{3}-30x^{2}
|
critical points of f(x)=48x-6x^2
|
critical\:points\:f(x)=48x-6x^{2}
|
inverse of f(x)=3log_{2}(2x-8)
|
inverse\:f(x)=3\log_{2}(2x-8)
|
periodicity of f(x)=-tan(1/4 x)
|
periodicity\:f(x)=-\tan(\frac{1}{4}x)
|
domain of y=cos(3x)
|
domain\:y=\cos(3x)
|
domain of \sqrt[4]{56x^5}
|
domain\:\sqrt[4]{56x^{5}}
|
domain of f(x)=(sqrt(x-4))^2-1
|
domain\:f(x)=(\sqrt{x-4})^{2}-1
|
inverse of f(x)=-35x+5
|
inverse\:f(x)=-35x+5
|
critical points of f(x)=tsqrt(4)-t,t< 3
|
critical\:points\:f(x)=t\sqrt{4}-t,t\lt\:3
|
asymptotes of 1/(x-2)
|
asymptotes\:\frac{1}{x-2}
|
domain of sqrt(-x+4)
|
domain\:\sqrt{-x+4}
|
range of f(x)=(|x-5|)\div (x-3)>= 0
|
range\:f(x)=(|x-5|)\div\:(x-3)\ge\:0
|
inverse of f(x)=5^{x-6}+2
|
inverse\:f(x)=5^{x-6}+2
|
inverse of f(x)=(2x)/(5-3x)
|
inverse\:f(x)=\frac{2x}{5-3x}
|
intercepts of f(x)=2x^3-5x^2-10x+5
|
intercepts\:f(x)=2x^{3}-5x^{2}-10x+5
|
symmetry 4x^2+9y^2=36
|
symmetry\:4x^{2}+9y^{2}=36
|
distance (0,2)(4,0)
|
distance\:(0,2)(4,0)
|