intercepts of x^2-49
|
intercepts\:x^{2}-49
|
domain of f(x)=x^2-4x+5
|
domain\:f(x)=x^{2}-4x+5
|
tan(x)
|
\tan(x)
|
slope of 2x+4y=10
|
slope\:2x+4y=10
|
asymptotes of f(x)=(x-2)/(2x-6)
|
asymptotes\:f(x)=\frac{x-2}{2x-6}
|
domain of (-4+2x^2)/(x^2-1)
|
domain\:\frac{-4+2x^{2}}{x^{2}-1}
|
critical points of 2cos^2(x)
|
critical\:points\:2\cos^{2}(x)
|
intercepts of f(x)=5x+4y=20
|
intercepts\:f(x)=5x+4y=20
|
extreme points of f(x)=x^{(2)}+2x-3
|
extreme\:points\:f(x)=x^{(2)}+2x-3
|
extreme points of f(x)=5x^4-30x^2
|
extreme\:points\:f(x)=5x^{4}-30x^{2}
|
monotone intervals f(x)=x^4+3x^3
|
monotone\:intervals\:f(x)=x^{4}+3x^{3}
|
domain of f(x)=ln(x-6)
|
domain\:f(x)=\ln(x-6)
|
domain of f(x)=((x-4)(x+9))/(x^2-1)
|
domain\:f(x)=\frac{(x-4)(x+9)}{x^{2}-1}
|
domain of (x+1)/(2x-1)
|
domain\:\frac{x+1}{2x-1}
|
range of f(x)=\sqrt[3]{x+7}
|
range\:f(x)=\sqrt[3]{x+7}
|
domain of (5x)/(7-3x)
|
domain\:\frac{5x}{7-3x}
|
asymptotes of f(x)= 3/(x^2+x-2)
|
asymptotes\:f(x)=\frac{3}{x^{2}+x-2}
|
domain of f(x)=x^2-14x+45
|
domain\:f(x)=x^{2}-14x+45
|
slope of y=x+4
|
slope\:y=x+4
|
inverse of f(x)= 2/3 x-2
|
inverse\:f(x)=\frac{2}{3}x-2
|
critical points of x^2-2x+3
|
critical\:points\:x^{2}-2x+3
|
domain of f(x)=(2-x)/(x+1)
|
domain\:f(x)=\frac{2-x}{x+1}
|
domain of (2x)/(100-x)
|
domain\:\frac{2x}{100-x}
|
symmetry-x^2+2x+3
|
symmetry\:-x^{2}+2x+3
|
domain of f(x)=9x+5
|
domain\:f(x)=9x+5
|
asymptotes of f(x)=(-9)/(-4x+2)
|
asymptotes\:f(x)=\frac{-9}{-4x+2}
|
domain of f(x)= 3/(x-3)
|
domain\:f(x)=\frac{3}{x-3}
|
inverse of 16-x^2
|
inverse\:16-x^{2}
|
domain of f(x)=-7x+6
|
domain\:f(x)=-7x+6
|
asymptotes of f(x)= 1/(x+4)
|
asymptotes\:f(x)=\frac{1}{x+4}
|
inverse of f(x)=(3x-2)/x
|
inverse\:f(x)=\frac{3x-2}{x}
|
range of f(x)=\sqrt[3]{x}-6
|
range\:f(x)=\sqrt[3]{x}-6
|
asymptotes of 5^{-x}
|
asymptotes\:5^{-x}
|
inverse of f(x)=4\sqrt[3]{1/3 (x-5)}+2
|
inverse\:f(x)=4\sqrt[3]{\frac{1}{3}(x-5)}+2
|
range of 1/4 x^3-2
|
range\:\frac{1}{4}x^{3}-2
|
domain of f(x)=sqrt(-9x+45)
|
domain\:f(x)=\sqrt{-9x+45}
|
intercepts of f(x)=2y+4x=7
|
intercepts\:f(x)=2y+4x=7
|
domain of y= 1/(x-3)+2
|
domain\:y=\frac{1}{x-3}+2
|
range of 10^{x-3}
|
range\:10^{x-3}
|
domain of f(x)=(3x+6)/(x-1)
|
domain\:f(x)=\frac{3x+6}{x-1}
|
y=log_{2}(x)
|
y=\log_{2}(x)
|
range of-x^2+5x-7
|
range\:-x^{2}+5x-7
|
symmetry 2x6-5x
|
symmetry\:2x6-5x
|
slope intercept of x+y=-1
|
slope\:intercept\:x+y=-1
|
asymptotes of f(x)=sqrt(x^2+8)-x
|
asymptotes\:f(x)=\sqrt{x^{2}+8}-x
|
line (4,-8)(4,9)
|
line\:(4,-8)(4,9)
|
inflection points of f(x)=2x^3-3x^2+8x-1
|
inflection\:points\:f(x)=2x^{3}-3x^{2}+8x-1
|
domain of (17)/((1-4x)^2)
|
domain\:\frac{17}{(1-4x)^{2}}
|
intercepts of (x-5)/(x+4)
|
intercepts\:\frac{x-5}{x+4}
|
range of 1/(X^2)
|
range\:\frac{1}{X^{2}}
|
slope intercept of 2x+3y=7
|
slope\:intercept\:2x+3y=7
|
midpoint (2,-5)(4,3)
|
midpoint\:(2,-5)(4,3)
|
domain of y=3+sqrt(x+2)
|
domain\:y=3+\sqrt{x+2}
|
inverse of f(x)=(7-8x)/3
|
inverse\:f(x)=\frac{7-8x}{3}
|
critical points of f(x)=2x+4
|
critical\:points\:f(x)=2x+4
|
critical points of 1/2 x^3-2x^2-1
|
critical\:points\:\frac{1}{2}x^{3}-2x^{2}-1
|
critical points of-x^3+2x^2+2
|
critical\:points\:-x^{3}+2x^{2}+2
|
range of (3x^3-30x+76)/(x^2-10x+25)
|
range\:\frac{3x^{3}-30x+76}{x^{2}-10x+25}
|
intercepts of x+2
|
intercepts\:x+2
|
shift cos(2x)
|
shift\:\cos(2x)
|
critical points of f(x)=x^6(x-1)^5
|
critical\:points\:f(x)=x^{6}(x-1)^{5}
|
inverse of f(x)= 100/3-x/3
|
inverse\:f(x)=\frac{100}{3}-\frac{x}{3}
|
slope of 0/(-1)
|
slope\:\frac{0}{-1}
|
intercepts of f(x)=x^2-8x+25
|
intercepts\:f(x)=x^{2}-8x+25
|
inverse of 1/(8x)
|
inverse\:\frac{1}{8x}
|
asymptotes of f(x)=(x-5)/(x^2-25)
|
asymptotes\:f(x)=\frac{x-5}{x^{2}-25}
|
extreme points of f(x)=3+sin((pi)/3 x)
|
extreme\:points\:f(x)=3+\sin(\frac{\pi}{3}x)
|
perpendicular 2x-y=9
|
perpendicular\:2x-y=9
|
domain of f(x)=(3x^2+1)/((x-1)^2)
|
domain\:f(x)=\frac{3x^{2}+1}{(x-1)^{2}}
|
domain of log_{5}(x)+3log_{25}(x)
|
domain\:\log_{5}(x)+3\log_{25}(x)
|
domain of f(x)=((2z-6))/(9z+1)
|
domain\:f(x)=\frac{(2z-6)}{9z+1}
|
domain of u(x)=sqrt(x+1)
|
domain\:u(x)=\sqrt{x+1}
|
domain of f(x)=sqrt(6x+6)
|
domain\:f(x)=\sqrt{6x+6}
|
slope of 6x+3y=-9
|
slope\:6x+3y=-9
|
inverse of sqrt(3-2x)
|
inverse\:\sqrt{3-2x}
|
domain of f(x)=((sqrt(x-4))(x-8))/(x-5)
|
domain\:f(x)=\frac{(\sqrt{x-4})(x-8)}{x-5}
|
inverse of f(x)=(-2x+1)/3
|
inverse\:f(x)=\frac{-2x+1}{3}
|
range of f(x)=4^{x-2}
|
range\:f(x)=4^{x-2}
|
inverse of f(x)=2-sqrt(2x+1)
|
inverse\:f(x)=2-\sqrt{2x+1}
|
domain of f(x)= x/(x^2-36)
|
domain\:f(x)=\frac{x}{x^{2}-36}
|
asymptotes of f(x)=(x+2)/(x^2-3x-4)
|
asymptotes\:f(x)=\frac{x+2}{x^{2}-3x-4}
|
inverse of f(x)= 3/4 x+9
|
inverse\:f(x)=\frac{3}{4}x+9
|
inverse of f(x)=ln(3^x)-2
|
inverse\:f(x)=\ln(3^{x})-2
|
inverse of f(x)=8x^2
|
inverse\:f(x)=8x^{2}
|
inverse of (x-8)/(x+8)
|
inverse\:\frac{x-8}{x+8}
|
symmetry y=x^2-6x-1
|
symmetry\:y=x^{2}-6x-1
|
inflection points of (2-x)e^{-x}
|
inflection\:points\:(2-x)e^{-x}
|
inverse of f(x)=(3x+2)/(5x)
|
inverse\:f(x)=\frac{3x+2}{5x}
|
domain of (5x)/(ln(x^2-4))
|
domain\:\frac{5x}{\ln(x^{2}-4)}
|
extreme points of f(x)=-0.3x^2+2.4x+98.6
|
extreme\:points\:f(x)=-0.3x^{2}+2.4x+98.6
|
inverse of f(x)= 4/(x-1)
|
inverse\:f(x)=\frac{4}{x-1}
|
asymptotes of f(x)=(9-3x)/(x-10)
|
asymptotes\:f(x)=\frac{9-3x}{x-10}
|
symmetry y=(x^9)/(81-x^2)
|
symmetry\:y=\frac{x^{9}}{81-x^{2}}
|
midpoint (-3,8)(1,5)
|
midpoint\:(-3,8)(1,5)
|
symmetry g(x)=-x^2-5
|
symmetry\:g(x)=-x^{2}-5
|
critical points of f(x)=x^4-98x^2+2401
|
critical\:points\:f(x)=x^{4}-98x^{2}+2401
|
inverse of f(x)=(sqrt(x))/2
|
inverse\:f(x)=\frac{\sqrt{x}}{2}
|
range of f(x)=9x
|
range\:f(x)=9x
|
asymptotes of f(x)=(4e^x)/(e^x-2)
|
asymptotes\:f(x)=\frac{4e^{x}}{e^{x}-2}
|
asymptotes of 2^x+3
|
asymptotes\:2^{x}+3
|