domain of h(x)=-sqrt(x+3)
|
domain\:h(x)=-\sqrt{x+3}
|
domain of f(x)=e^{-x}
|
domain\:f(x)=e^{-x}
|
asymptotes of-3x^3+18x^2-3
|
asymptotes\:-3x^{3}+18x^{2}-3
|
extreme points of f(x)=-1/3 x^3+x-12
|
extreme\:points\:f(x)=-\frac{1}{3}x^{3}+x-12
|
slope of 13x-11y=-12
|
slope\:13x-11y=-12
|
asymptotes of f(x)=(x^2-6x+9)/(x^2+x-2)
|
asymptotes\:f(x)=\frac{x^{2}-6x+9}{x^{2}+x-2}
|
domain of y=(x^2+x-6)/(x^2-7x+10)
|
domain\:y=\frac{x^{2}+x-6}{x^{2}-7x+10}
|
inverse of y=sqrt(x-1)
|
inverse\:y=\sqrt{x-1}
|
inverse of 2sqrt(x)
|
inverse\:2\sqrt{x}
|
domain of sqrt(19-x)
|
domain\:\sqrt{19-x}
|
domain of f(x)=3x+3
|
domain\:f(x)=3x+3
|
slope of x-2y=0
|
slope\:x-2y=0
|
domain of (x^2-x)/(x^3-4x)
|
domain\:\frac{x^{2}-x}{x^{3}-4x}
|
domain of f(55)=55t-5t^2
|
domain\:f(55)=55t-5t^{2}
|
domain of-8x^2
|
domain\:-8x^{2}
|
range of (-1)/(x-1)-1
|
range\:\frac{-1}{x-1}-1
|
symmetry y=-2(x-3)2+5
|
symmetry\:y=-2(x-3)2+5
|
asymptotes of f(x)=y=(x+3)/(x-2)
|
asymptotes\:f(x)=y=\frac{x+3}{x-2}
|
domain of f(x)=sqrt(-3x+12)
|
domain\:f(x)=\sqrt{-3x+12}
|
monotone intervals x^2+2x-1-(2x^2-3x+6)
|
monotone\:intervals\:x^{2}+2x-1-(2x^{2}-3x+6)
|
domain of f(x)= 1/(sqrt(x^2-4x-12))
|
domain\:f(x)=\frac{1}{\sqrt{x^{2}-4x-12}}
|
domain of f(x)=x^4+12x^2+36
|
domain\:f(x)=x^{4}+12x^{2}+36
|
slope of 2%
|
slope\:2\%
|
critical points of f(x)=(x-2)^{4/3}
|
critical\:points\:f(x)=(x-2)^{\frac{4}{3}}
|
domain of e^{x-6}
|
domain\:e^{x-6}
|
distance (x,-3)(2,-6)
|
distance\:(x,-3)(2,-6)
|
inverse of f(x)=48.5-2.5x
|
inverse\:f(x)=48.5-2.5x
|
midpoint (1,3)(7,5)
|
midpoint\:(1,3)(7,5)
|
inverse of f(x)=(4x+5)/(2x+1)
|
inverse\:f(x)=\frac{4x+5}{2x+1}
|
inverse of x^2-4x-4
|
inverse\:x^{2}-4x-4
|
line m= 7/6 ,\at (6,4)
|
line\:m=\frac{7}{6},\at\:(6,4)
|
domain of f(x)=xsqrt(x)-5sqrt(x)
|
domain\:f(x)=x\sqrt{x}-5\sqrt{x}
|
asymptotes of f(x)=(1/4)^x
|
asymptotes\:f(x)=(\frac{1}{4})^{x}
|
slope intercept of-4x+y=8
|
slope\:intercept\:-4x+y=8
|
domain of f(x)=x^3-8
|
domain\:f(x)=x^{3}-8
|
inverse of f(x)=(1/3)^x
|
inverse\:f(x)=(\frac{1}{3})^{x}
|
extreme points of f(x)=x-ln(x)
|
extreme\:points\:f(x)=x-\ln(x)
|
domain of f(x)=\sqrt[3]{x+1}
|
domain\:f(x)=\sqrt[3]{x+1}
|
intercepts of f(x)=y=8x-18
|
intercepts\:f(x)=y=8x-18
|
slope intercept of-1/2 x+y=4
|
slope\:intercept\:-\frac{1}{2}x+y=4
|
inverse of y=8+0.75x
|
inverse\:y=8+0.75x
|
f(x)=(x^2)/(x^2-4)
|
f(x)=\frac{x^{2}}{x^{2}-4}
|
intercepts of f(x)=-x^2+8x+2
|
intercepts\:f(x)=-x^{2}+8x+2
|
inverse of (17)/x
|
inverse\:\frac{17}{x}
|
inverse of f(x)= 9/((x^2+5x+6))
|
inverse\:f(x)=\frac{9}{(x^{2}+5x+6)}
|
intercepts of (3x)/((x+2)^2)
|
intercepts\:\frac{3x}{(x+2)^{2}}
|
domain of f(x)=((sqrt(x)))/(2x^2+x-1)
|
domain\:f(x)=\frac{(\sqrt{x})}{2x^{2}+x-1}
|
domain of f(x)=(2x^2+2x-4)/(x^2+x)
|
domain\:f(x)=\frac{2x^{2}+2x-4}{x^{2}+x}
|
domain of (x-3)/(x+2)
|
domain\:\frac{x-3}{x+2}
|
inverse of f(x)=-x+11
|
inverse\:f(x)=-x+11
|
asymptotes of f(x)=(-2x)/(x-3)
|
asymptotes\:f(x)=\frac{-2x}{x-3}
|
line (4,0)(2,4)
|
line\:(4,0)(2,4)
|
inverse of g(x)=x^2-9
|
inverse\:g(x)=x^{2}-9
|
range of 5x^4-8
|
range\:5x^{4}-8
|
inverse of y=5^x-8
|
inverse\:y=5^{x}-8
|
distance (7,-1)(5,9)
|
distance\:(7,-1)(5,9)
|
critical points of x^3-x
|
critical\:points\:x^{3}-x
|
domain of f(x)=(8x)/((x+9)^2)
|
domain\:f(x)=\frac{8x}{(x+9)^{2}}
|
inverse of f(x)= 2/(x-3)+4
|
inverse\:f(x)=\frac{2}{x-3}+4
|
range of 1/(x^2-1)
|
range\:\frac{1}{x^{2}-1}
|
inverse of f(x)=-2x
|
inverse\:f(x)=-2x
|
shift f(x)=3sin(pi x+6)-3
|
shift\:f(x)=3\sin(\pi\:x+6)-3
|
intercepts of f(x)= 1/5 (x-3)^2-5
|
intercepts\:f(x)=\frac{1}{5}(x-3)^{2}-5
|
midpoint (m,c)(0,0)
|
midpoint\:(m,c)(0,0)
|
range of (x^2)/(x+1)
|
range\:\frac{x^{2}}{x+1}
|
inverse of (4x)/(3-7x)
|
inverse\:\frac{4x}{3-7x}
|
intercepts of f(x)=x^2-x-5
|
intercepts\:f(x)=x^{2}-x-5
|
domain of 7/(2*sqrt(9+7x))
|
domain\:7/(2\cdot\:\sqrt{9+7x})
|
inverse of y=log_{5}(x)
|
inverse\:y=\log_{5}(x)
|
domain of-(x+5)/7
|
domain\:-\frac{x+5}{7}
|
extreme points of f(x)=(-x)/(x^2+7)
|
extreme\:points\:f(x)=\frac{-x}{x^{2}+7}
|
intercepts of (x^2+x-12)/(x^2+x)
|
intercepts\:\frac{x^{2}+x-12}{x^{2}+x}
|
domain of f(x)= 9/(x+2)
|
domain\:f(x)=\frac{9}{x+2}
|
domain of f(x)=sqrt(\sqrt{x-3)-3}
|
domain\:f(x)=\sqrt{\sqrt{x-3}-3}
|
domain of f(x)=log_{3}(x-1)
|
domain\:f(x)=\log_{3}(x-1)
|
range of f(x)=-(1/3)^x+3
|
range\:f(x)=-(\frac{1}{3})^{x}+3
|
intercepts of f(x)=2x-2/3 = 3/4 y+3
|
intercepts\:f(x)=2x-\frac{2}{3}=\frac{3}{4}y+3
|
inverse of f(x)=((x+5))/(x-2)
|
inverse\:f(x)=\frac{(x+5)}{x-2}
|
slope intercept of-x+2y-10=0
|
slope\:intercept\:-x+2y-10=0
|
shift tan(x+pi)
|
shift\:\tan(x+\pi)
|
asymptotes of f(x)=(-9x-36)/(3x-9)
|
asymptotes\:f(x)=\frac{-9x-36}{3x-9}
|
inflection points of x/(x^2+25)
|
inflection\:points\:\frac{x}{x^{2}+25}
|
range of f(x)=x^2-2x+5
|
range\:f(x)=x^{2}-2x+5
|
domain of f(-2)=2-x
|
domain\:f(-2)=2-x
|
line m=-1,\at (0,0)
|
line\:m=-1,\at\:(0,0)
|
domain of f(x)=(4x-3)/(6-5x)
|
domain\:f(x)=\frac{4x-3}{6-5x}
|
domain of f(x)=sqrt(x+6)-7
|
domain\:f(x)=\sqrt{x+6}-7
|
parallel y=-5/2 x-6
|
parallel\:y=-\frac{5}{2}x-6
|
inverse of f(x)=3x-3
|
inverse\:f(x)=3x-3
|
asymptotes of f(x)= 4/(x+1)
|
asymptotes\:f(x)=\frac{4}{x+1}
|
intercepts of (x^3-x)/(x^3+2x^2-3x)
|
intercepts\:\frac{x^{3}-x}{x^{3}+2x^{2}-3x}
|
periodicity of y=sin(x-(3pi)/4)
|
periodicity\:y=\sin(x-\frac{3\pi}{4})
|
intercepts of f(x)=((x-3)^2)/(x^2)
|
intercepts\:f(x)=\frac{(x-3)^{2}}{x^{2}}
|
range of f(x)=ln(x)+3
|
range\:f(x)=\ln(x)+3
|
inverse of \sqrt[5]{x}-2
|
inverse\:\sqrt[5]{x}-2
|
inverse of (10)
|
inverse\:(10)
|
domain of f(x)=(x-6)
|
domain\:f(x)=(x-6)
|
domain of f(x)= 1/(x+3)+2
|
domain\:f(x)=\frac{1}{x+3}+2
|
intercepts of-x^2+4x+2
|
intercepts\:-x^{2}+4x+2
|
inverse of 3x+12
|
inverse\:3x+12
|