inverse of f(x)= 5/(x+8)
|
inverse\:f(x)=\frac{5}{x+8}
|
asymptotes of (4+x^4)/(x^2-x^4)
|
asymptotes\:\frac{4+x^{4}}{x^{2}-x^{4}}
|
inverse of f(x)=2^{-x}
|
inverse\:f(x)=2^{-x}
|
inverse of f(x)=10x-2
|
inverse\:f(x)=10x-2
|
parity f(x)=-x^4+x^2+1
|
parity\:f(x)=-x^{4}+x^{2}+1
|
periodicity of f(x)=5sin(1/4 x)
|
periodicity\:f(x)=5\sin(\frac{1}{4}x)
|
extreme points of f(x)=-x^2+4x+2
|
extreme\:points\:f(x)=-x^{2}+4x+2
|
inverse of f(x)=2e^{x+1}-4
|
inverse\:f(x)=2e^{x+1}-4
|
domain of f(x)=-(x+1)^2+4
|
domain\:f(x)=-(x+1)^{2}+4
|
asymptotes of f(x)= 5/(-3x+3)
|
asymptotes\:f(x)=\frac{5}{-3x+3}
|
range of 5sec(x)
|
range\:5\sec(x)
|
range of f(x)= 2/(x-2)
|
range\:f(x)=\frac{2}{x-2}
|
asymptotes of f(x)=((2x^3+2x))/(x^2-1)
|
asymptotes\:f(x)=\frac{(2x^{3}+2x)}{x^{2}-1}
|
range of 3x+4
|
range\:3x+4
|
periodicity of f(x)=cos(1/3 x)
|
periodicity\:f(x)=\cos(\frac{1}{3}x)
|
critical points of f(x)=32x-2x^2
|
critical\:points\:f(x)=32x-2x^{2}
|
asymptotes of log_{2}(x)
|
asymptotes\:\log_{2}(x)
|
asymptotes of f(x)=(-2x+8)/(x+2)
|
asymptotes\:f(x)=\frac{-2x+8}{x+2}
|
inverse of f(x)=(x-3)^2+1/2
|
inverse\:f(x)=(x-3)^{2}+\frac{1}{2}
|
domain of 9/(sqrt(t))
|
domain\:\frac{9}{\sqrt{t}}
|
domain of f(x)= 1/(x^2-7x-8)
|
domain\:f(x)=\frac{1}{x^{2}-7x-8}
|
perpendicular 3y=x-6(2,-5)
|
perpendicular\:3y=x-6(2,-5)
|
domain of f(x)=(2x-6)/(x^{(2)}+4x-5)
|
domain\:f(x)=(2x-6)/(x^{(2)}+4x-5)
|
perpendicular y=-2x-3
|
perpendicular\:y=-2x-3
|
asymptotes of f(x)=(3x^2-108)/(x^2-6x)
|
asymptotes\:f(x)=\frac{3x^{2}-108}{x^{2}-6x}
|
domain of f(x)= 7/(sqrt(x))
|
domain\:f(x)=\frac{7}{\sqrt{x}}
|
asymptotes of f(x)=(x^2+2x)/(x^3-49x)
|
asymptotes\:f(x)=\frac{x^{2}+2x}{x^{3}-49x}
|
inverse of f(x)=13x+9
|
inverse\:f(x)=13x+9
|
extreme points of f(x)= 1/4 (3x-2),x<= 3
|
extreme\:points\:f(x)=\frac{1}{4}(3x-2),x\le\:3
|
inverse of f(x)=x+1/x
|
inverse\:f(x)=x+\frac{1}{x}
|
critical points of sec^2(x)
|
critical\:points\:\sec^{2}(x)
|
extreme points of f(x)=(x^3)/3-x^2-8x
|
extreme\:points\:f(x)=\frac{x^{3}}{3}-x^{2}-8x
|
line (-4,1)\land (1,7)
|
line\:(-4,1)\land\:(1,7)
|
perpendicular (4,-2)4x+5y=8
|
perpendicular\:(4,-2)4x+5y=8
|
domain of 1/(sqrt(x^2-7x))
|
domain\:\frac{1}{\sqrt{x^{2}-7x}}
|
extreme points of f(x)=x^2e^{-x^2}
|
extreme\:points\:f(x)=x^{2}e^{-x^{2}}
|
extreme points of f(x)=-6x^3+9x^2+36x
|
extreme\:points\:f(x)=-6x^{3}+9x^{2}+36x
|
distance (-2,-6)(-5,0)
|
distance\:(-2,-6)(-5,0)
|
critical points of f(x)=3x^4+12x
|
critical\:points\:f(x)=3x^{4}+12x
|
intercepts of f(x)=-3(4-x)(4x+3)
|
intercepts\:f(x)=-3(4-x)(4x+3)
|
slope intercept of y+4=3(x+1)
|
slope\:intercept\:y+4=3(x+1)
|
intercepts of 12sqrt(p)
|
intercepts\:12\sqrt{p}
|
inverse of f(x)=sqrt(x+1)+2
|
inverse\:f(x)=\sqrt{x+1}+2
|
periodicity of f(x)= 1/2 sec((pi x)/2)
|
periodicity\:f(x)=\frac{1}{2}\sec(\frac{\pi\:x}{2})
|
inverse of f(x)=(x-7)/3
|
inverse\:f(x)=\frac{x-7}{3}
|
inverse of f(r)=(-3-4r)/(2+3r)
|
inverse\:f(r)=\frac{-3-4r}{2+3r}
|
critical points of f(x)=4x^3-18x^2+24x
|
critical\:points\:f(x)=4x^{3}-18x^{2}+24x
|
domain of f(x)=y=-sqrt(x+3)
|
domain\:f(x)=y=-\sqrt{x+3}
|
domain of f(x)=sqrt(15-x)
|
domain\:f(x)=\sqrt{15-x}
|
inverse of (f(x))=x^4-1/2 ,x>= 0
|
inverse\:(f(x))=x^{4}-\frac{1}{2},x\ge\:0
|
midpoint (5,2)(-4,-3)
|
midpoint\:(5,2)(-4,-3)
|
asymptotes of f(x)=(4x^2+2)/(4x+4)
|
asymptotes\:f(x)=\frac{4x^{2}+2}{4x+4}
|
inflection points of f(x)= 3/(x+2)
|
inflection\:points\:f(x)=\frac{3}{x+2}
|
domain of ln(sqrt(x^2-5x+6))
|
domain\:\ln(\sqrt{x^{2}-5x+6})
|
asymptotes of (2x^2-3x-20)/(x-5)
|
asymptotes\:\frac{2x^{2}-3x-20}{x-5}
|
range of f(x)=2+(x-4)^{2/3}
|
range\:f(x)=2+(x-4)^{\frac{2}{3}}
|
midpoint (8,5)(11,0)
|
midpoint\:(8,5)(11,0)
|
domain of f(x)=2-18t
|
domain\:f(x)=2-18t
|
inverse of 1/2 log_{10}(2x)
|
inverse\:\frac{1}{2}\log_{10}(2x)
|
symmetry (x+2)^2-1
|
symmetry\:(x+2)^{2}-1
|
critical points of f(x)=ln(x^2-1)
|
critical\:points\:f(x)=\ln(x^{2}-1)
|
domain of 1/(-10(\frac{1){-5x-6})+3}
|
domain\:\frac{1}{-10(\frac{1}{-5x-6})+3}
|
parity (x+1)/(x^2-1)
|
parity\:\frac{x+1}{x^{2}-1}
|
inverse of f(x)=sqrt(x+2)
|
inverse\:f(x)=\sqrt{x+2}
|
range of f(x)= 1/x-4
|
range\:f(x)=\frac{1}{x}-4
|
perpendicular y=0.25x-7,\at (-6,8)
|
perpendicular\:y=0.25x-7,\at\:(-6,8)
|
inverse of f(x)=6+1/(7x)
|
inverse\:f(x)=6+\frac{1}{7x}
|
midpoint (5,0)(3,4)
|
midpoint\:(5,0)(3,4)
|
extreme points of f(x)=(3x-1)(x+3)(x-2)
|
extreme\:points\:f(x)=(3x-1)(x+3)(x-2)
|
perpendicular x-2y=6
|
perpendicular\:x-2y=6
|
inverse of f(x)=(x-3)/(x+9)
|
inverse\:f(x)=\frac{x-3}{x+9}
|
parity f(x)= 1/(x^2-5x+6)
|
parity\:f(x)=\frac{1}{x^{2}-5x+6}
|
domain of f(x)=-3x-2
|
domain\:f(x)=-3x-2
|
inverse of f(x)=11^x
|
inverse\:f(x)=11^{x}
|
asymptotes of f(x)= 1/(-x+4)
|
asymptotes\:f(x)=\frac{1}{-x+4}
|
inverse of x+3
|
inverse\:x+3
|
asymptotes of f(x)=(x^3-8)/(x-2)
|
asymptotes\:f(x)=\frac{x^{3}-8}{x-2}
|
line-3x+y=-1
|
line\:-3x+y=-1
|
line x=3
|
line\:x=3
|
inflection points of (98)/(x^3)
|
inflection\:points\:\frac{98}{x^{3}}
|
range of-3x+1
|
range\:-3x+1
|
inverse of f(x)=3-6x
|
inverse\:f(x)=3-6x
|
line (2,7)m=4
|
line\:(2,7)m=4
|
domain of 1/(sqrt(1+2x))
|
domain\:\frac{1}{\sqrt{1+2x}}
|
range of log_{0.5}(x)
|
range\:\log_{0.5}(x)
|
extreme points of f(x)=(x+4)^{6/7}
|
extreme\:points\:f(x)=(x+4)^{\frac{6}{7}}
|
extreme points of 3x^4+4x^3
|
extreme\:points\:3x^{4}+4x^{3}
|
inverse of log_{4}(x)
|
inverse\:\log_{4}(x)
|
domain of f(x)=49x-16
|
domain\:f(x)=49x-16
|
inverse of f(x)=((1+x))/x
|
inverse\:f(x)=\frac{(1+x)}{x}
|
line (2,5)(3,8)
|
line\:(2,5)(3,8)
|
extreme points of x^6(x-1)^5
|
extreme\:points\:x^{6}(x-1)^{5}
|
asymptotes of f(x)=((5+x^4))/(x^2-x^4)
|
asymptotes\:f(x)=\frac{(5+x^{4})}{x^{2}-x^{4}}
|
range of f(x)=-sin(x-(pi)/3)
|
range\:f(x)=-\sin(x-\frac{\pi}{3})
|
domain of f(x)= 5/(3x-9)
|
domain\:f(x)=\frac{5}{3x-9}
|
inverse of f(x)=17
|
inverse\:f(x)=17
|
parallel 2x-y=6,\at (-7,-8)
|
parallel\:2x-y=6,\at\:(-7,-8)
|
inverse of f(x)=\sqrt[3]{4x-3}
|
inverse\:f(x)=\sqrt[3]{4x-3}
|
domain of f(x)=ln(x)+3
|
domain\:f(x)=\ln(x)+3
|
monotone intervals f(x)=3x+2,x<=-1
|
monotone\:intervals\:f(x)=3x+2,x\le\:-1
|