critical points of 1/4 x^2
|
critical\:points\:\frac{1}{4}x^{2}
|
domain of \sqrt[4]{x^4-81}
|
domain\:\sqrt[4]{x^{4}-81}
|
inverse of e^{2x-1}
|
inverse\:e^{2x-1}
|
inverse of f(13)=
|
inverse\:f(13)=
|
domain of f(x)=x^2+y^2=1
|
domain\:f(x)=x^{2}+y^{2}=1
|
inverse of y=(x-2)^3
|
inverse\:y=(x-2)^{3}
|
intercepts of x(x+13)+40
|
intercepts\:x(x+13)+40
|
domain of 2x-1
|
domain\:2x-1
|
intercepts of f(x)=(x-6)^2+3
|
intercepts\:f(x)=(x-6)^{2}+3
|
inflection points of (x^2-7x+26)/(x-5)
|
inflection\:points\:\frac{x^{2}-7x+26}{x-5}
|
extreme points of f(x)=(6x^2)/(x^2-4)
|
extreme\:points\:f(x)=\frac{6x^{2}}{x^{2}-4}
|
extreme points of f(x)=4+6x^2-4x^3
|
extreme\:points\:f(x)=4+6x^{2}-4x^{3}
|
range of (1/3)^x
|
range\:(\frac{1}{3})^{x}
|
perpendicular y=-3-2/5 x
|
perpendicular\:y=-3-\frac{2}{5}x
|
domain of f(x)=5x^2
|
domain\:f(x)=5x^{2}
|
inflection points of f(x)=4x^3-6x^2+5x-6
|
inflection\:points\:f(x)=4x^{3}-6x^{2}+5x-6
|
y=2x+5
|
y=2x+5
|
domain of f(x)=(x^2-2x)/(x^3-16x)
|
domain\:f(x)=\frac{x^{2}-2x}{x^{3}-16x}
|
extreme points of f(x)=-x^2-2x-4
|
extreme\:points\:f(x)=-x^{2}-2x-4
|
extreme points of f(x)=x+sin(x)
|
extreme\:points\:f(x)=x+\sin(x)
|
range of f(x)=x^2+8
|
range\:f(x)=x^{2}+8
|
range of f(x)=2x^2-12x+16
|
range\:f(x)=2x^{2}-12x+16
|
critical points of 5x^4-2x^2+2x
|
critical\:points\:5x^{4}-2x^{2}+2x
|
domain of f(x)= 2/(\frac{3){x-1}}
|
domain\:f(x)=\frac{2}{\frac{3}{x-1}}
|
domain of f(x)=sqrt((x+3)/(x-3))
|
domain\:f(x)=\sqrt{\frac{x+3}{x-3}}
|
critical points of f(x)=(x-6)^3
|
critical\:points\:f(x)=(x-6)^{3}
|
inverse of 4/(s^2-9)
|
inverse\:\frac{4}{s^{2}-9}
|
domain of sqrt(6x+1)
|
domain\:\sqrt{6x+1}
|
critical points of f(x)=x^4-8x^2+2
|
critical\:points\:f(x)=x^{4}-8x^{2}+2
|
intercepts of f(x)=-(x+6)^2+6
|
intercepts\:f(x)=-(x+6)^{2}+6
|
slope of y=2-3x
|
slope\:y=2-3x
|
intercepts of y=(x+5)/(3x)
|
intercepts\:y=\frac{x+5}{3x}
|
range of sqrt((x-1)^2)
|
range\:\sqrt{(x-1)^{2}}
|
parallel y=-x+7
|
parallel\:y=-x+7
|
extreme points of f(x)=x^2e^x-6
|
extreme\:points\:f(x)=x^{2}e^{x}-6
|
intercepts of f(x)=3x-5y=-15
|
intercepts\:f(x)=3x-5y=-15
|
range of 3-1/2 x
|
range\:3-\frac{1}{2}x
|
slope of-3x-y=-2
|
slope\:-3x-y=-2
|
inverse of f(x)=(3x)/(5x-2)
|
inverse\:f(x)=\frac{3x}{5x-2}
|
inflection points of f(x)=x^2e^x
|
inflection\:points\:f(x)=x^{2}e^{x}
|
slope intercept of 5-(2y+3x)=4(x-y)
|
slope\:intercept\:5-(2y+3x)=4(x-y)
|
domain of f(x)= 1/10 x-1/8
|
domain\:f(x)=\frac{1}{10}x-\frac{1}{8}
|
periodicity of f(x)=2sin(pi x+5)-3
|
periodicity\:f(x)=2\sin(\pi\:x+5)-3
|
domain of f(x)=|x-3|
|
domain\:f(x)=|x-3|
|
slope of y=7-3x
|
slope\:y=7-3x
|
intercepts of p(x)=4x^5-5x^3+x
|
intercepts\:p(x)=4x^{5}-5x^{3}+x
|
symmetry 2x-x^2+15
|
symmetry\:2x-x^{2}+15
|
inverse of f(s)= 4/(s^2-9)
|
inverse\:f(s)=\frac{4}{s^{2}-9}
|
domain of 3^x-1
|
domain\:3^{x}-1
|
inflection points of x^3-27x+9
|
inflection\:points\:x^{3}-27x+9
|
perpendicular 5y-4x=-15
|
perpendicular\:5y-4x=-15
|
intercepts of f(x)=2x^3-4x^2
|
intercepts\:f(x)=2x^{3}-4x^{2}
|
inverse of f(x)=(-5x+2)/(6x+3)
|
inverse\:f(x)=\frac{-5x+2}{6x+3}
|
range of f(x)=-4sqrt(5-2x)
|
range\:f(x)=-4\sqrt{5-2x}
|
inverse of 3/(2-7x)
|
inverse\:\frac{3}{2-7x}
|
inverse of f(x)=x^2-2x-8
|
inverse\:f(x)=x^{2}-2x-8
|
slope of x-8=0
|
slope\:x-8=0
|
range of f(x)=5-x
|
range\:f(x)=5-x
|
domain of f(x)=|x|+2
|
domain\:f(x)=|x|+2
|
asymptotes of 1/(x-6)
|
asymptotes\:\frac{1}{x-6}
|
asymptotes of (x^2-3x-10)/(x-5)
|
asymptotes\:\frac{x^{2}-3x-10}{x-5}
|
inverse of f(x)=7x^3+2
|
inverse\:f(x)=7x^{3}+2
|
domain of 7/(sqrt(t))
|
domain\:\frac{7}{\sqrt{t}}
|
domain of cos(3x)
|
domain\:\cos(3x)
|
domain of f(x)=x^2-4x+1,x<= 2
|
domain\:f(x)=x^{2}-4x+1,x\le\:2
|
inverse of f(x)=(x-2)^2,x<= 2
|
inverse\:f(x)=(x-2)^{2},x\le\:2
|
inverse of f(x)=7+(6+x)^{1/2}
|
inverse\:f(x)=7+(6+x)^{\frac{1}{2}}
|
intercepts of (x^2)/(x^2-4)
|
intercepts\:\frac{x^{2}}{x^{2}-4}
|
domain of f(x)=(45x^2)/(25x)
|
domain\:f(x)=\frac{45x^{2}}{25x}
|
inverse of 3cos^2(x)
|
inverse\:3\cos^{2}(x)
|
inverse of f(x)= 5/4 x-10
|
inverse\:f(x)=\frac{5}{4}x-10
|
inverse of f(x)= 8/(sqrt(x-81))
|
inverse\:f(x)=\frac{8}{\sqrt{x-81}}
|
range of (64)/(x^2)+81
|
range\:\frac{64}{x^{2}}+81
|
intercepts of y=-4x
|
intercepts\:y=-4x
|
domain of (-x^2+4x-4)/(x^3-3x^2-9x+27)
|
domain\:\frac{-x^{2}+4x-4}{x^{3}-3x^{2}-9x+27}
|
line (4,0),(20,15)
|
line\:(4,0),(20,15)
|
inverse of-8x^2+4
|
inverse\:-8x^{2}+4
|
asymptotes of f(x)=(x^2+2x+1)/x
|
asymptotes\:f(x)=\frac{x^{2}+2x+1}{x}
|
domain of f(x)=\sqrt[4]{x-5}
|
domain\:f(x)=\sqrt[4]{x-5}
|
inverse of f(x)=x^2+3x+2
|
inverse\:f(x)=x^{2}+3x+2
|
range of f(x)=(x-1)^2-9
|
range\:f(x)=(x-1)^{2}-9
|
midpoint (2,-8)(7,-4)
|
midpoint\:(2,-8)(7,-4)
|
range of f(x)=x-2
|
range\:f(x)=x-2
|
domain of f(x)=(|x|)/x
|
domain\:f(x)=\frac{|x|}{x}
|
asymptotes of (x^2+x-12)/(x-3)
|
asymptotes\:\frac{x^{2}+x-12}{x-3}
|
intercepts of (2x)/(x^2-1)
|
intercepts\:\frac{2x}{x^{2}-1}
|
inverse of f(x)=-6x-4
|
inverse\:f(x)=-6x-4
|
range of f(x)=|x^2-4x|-1
|
range\:f(x)=|x^{2}-4x|-1
|
domain of x^2-2x+5
|
domain\:x^{2}-2x+5
|
intercepts of f(x)=2x^2+9x-5
|
intercepts\:f(x)=2x^{2}+9x-5
|
inverse of f(x)=\sqrt[5]{(x+3)/2}
|
inverse\:f(x)=\sqrt[5]{\frac{x+3}{2}}
|
domain of xln(x)
|
domain\:xln(x)
|
domain of f(x)=\sqrt[5]{x-6}
|
domain\:f(x)=\sqrt[5]{x-6}
|
monotone intervals f(x)=x^2+2x-5
|
monotone\:intervals\:f(x)=x^{2}+2x-5
|
midpoint (-1,-8)(8,0)
|
midpoint\:(-1,-8)(8,0)
|
domain of f(x)=(2(x+2))/(x^2)
|
domain\:f(x)=\frac{2(x+2)}{x^{2}}
|
extreme points of f(x)=2x^3+9x^2+12x
|
extreme\:points\:f(x)=2x^{3}+9x^{2}+12x
|
inverse of f(x)=8x+5
|
inverse\:f(x)=8x+5
|
distance (1,-5)(7,1)
|
distance\:(1,-5)(7,1)
|
line y=4x
|
line\:y=4x
|