domain of y=\sqrt[3]{x^4+9}
|
domain\:y=\sqrt[3]{x^{4}+9}
|
inverse of y= 1/2 x+1
|
inverse\:y=\frac{1}{2}x+1
|
intercepts of (1/2)^x
|
intercepts\:(\frac{1}{2})^{x}
|
range of f(x)=sqrt(x)-2
|
range\:f(x)=\sqrt{x}-2
|
symmetry y=-x^2+4x-2
|
symmetry\:y=-x^{2}+4x-2
|
critical points of f(x)=6x^2-6x-12
|
critical\:points\:f(x)=6x^{2}-6x-12
|
domain of f(x)=6x-1
|
domain\:f(x)=6x-1
|
extreme points of f(x)=x^3-5x^2+7x-5
|
extreme\:points\:f(x)=x^{3}-5x^{2}+7x-5
|
domain of y=(2x)/((x-2)(x+1))
|
domain\:y=\frac{2x}{(x-2)(x+1)}
|
range of f(x)=-sqrt(x+2)-3
|
range\:f(x)=-\sqrt{x+2}-3
|
range of 10x+200
|
range\:10x+200
|
inverse of f(x)=-4x-10
|
inverse\:f(x)=-4x-10
|
range of f(x)=sqrt(2x+3)
|
range\:f(x)=\sqrt{2x+3}
|
critical points of 3x-1
|
critical\:points\:3x-1
|
inverse of f(x)=8x+9
|
inverse\:f(x)=8x+9
|
line (25,-0.3),(35,-0.1)
|
line\:(25,-0.3),(35,-0.1)
|
critical points of 2x^3-3x^2-12x
|
critical\:points\:2x^{3}-3x^{2}-12x
|
midpoint (-6,11)(-2,5)
|
midpoint\:(-6,11)(-2,5)
|
intercepts of f(x)=(1/8)^x
|
intercepts\:f(x)=(\frac{1}{8})^{x}
|
inverse of f(x)=e^{2sqrt(x)}
|
inverse\:f(x)=e^{2\sqrt{x}}
|
line (5,4)(5,-2)
|
line\:(5,4)(5,-2)
|
inflection points of I^{22}
|
inflection\:points\:I^{22}
|
domain of y=2x^2
|
domain\:y=2x^{2}
|
inverse of f(x)=-x^2+2x
|
inverse\:f(x)=-x^{2}+2x
|
domain of 5-t^2
|
domain\:5-t^{2}
|
asymptotes of f(x)=(x^2-5x-6)/(3x^2-18x)
|
asymptotes\:f(x)=\frac{x^{2}-5x-6}{3x^{2}-18x}
|
domain of 3x+5
|
domain\:3x+5
|
domain of ((x/(x+3)))/((x/(x+3))+3)
|
domain\:\frac{(\frac{x}{x+3})}{(\frac{x}{x+3})+3}
|
domain of sqrt(3-x)-sqrt(x^2-4)
|
domain\:\sqrt{3-x}-\sqrt{x^{2}-4}
|
intercepts of x^2-5x+6
|
intercepts\:x^{2}-5x+6
|
intercepts of f(x)=y= 3/5 x-5
|
intercepts\:f(x)=y=\frac{3}{5}x-5
|
asymptotes of (dy)/y
|
asymptotes\:\frac{dy}{y}
|
slope intercept of x=8y
|
slope\:intercept\:x=8y
|
distance (9,-9)(-6,-7)
|
distance\:(9,-9)(-6,-7)
|
y= 1/4 x^2
|
y=\frac{1}{4}x^{2}
|
domain of f(x)=(3x)/(x^2-81)
|
domain\:f(x)=\frac{3x}{x^{2}-81}
|
slope of 2x+y=4
|
slope\:2x+y=4
|
domain of ((x-5)(x+1))/((x+1)(x-2)x)
|
domain\:\frac{(x-5)(x+1)}{(x+1)(x-2)x}
|
asymptotes of f(x)=(9e^x)/(1+e^{-x)}
|
asymptotes\:f(x)=\frac{9e^{x}}{1+e^{-x}}
|
inverse of f(x)=500+0.1x
|
inverse\:f(x)=500+0.1x
|
domain of f(x)=e^{x-2}
|
domain\:f(x)=e^{x-2}
|
domain of \sqrt[3]{t-6}
|
domain\:\sqrt[3]{t-6}
|
domain of sqrt(x^3-x)
|
domain\:\sqrt{x^{3}-x}
|
inverse of f(y)=x^3
|
inverse\:f(y)=x^{3}
|
perpendicular 9/8
|
perpendicular\:\frac{9}{8}
|
domain of f(x)=6(6x-5)-5
|
domain\:f(x)=6(6x-5)-5
|
line (1,4),(2,7)
|
line\:(1,4),(2,7)
|
inverse of f(x)=sqrt(7x+2)
|
inverse\:f(x)=\sqrt{7x+2}
|
inflection points of tan(x)
|
inflection\:points\:\tan(x)
|
slope intercept of x+2y=18
|
slope\:intercept\:x+2y=18
|
asymptotes of f(x)=(x+7)/(x^2-6x+8)
|
asymptotes\:f(x)=\frac{x+7}{x^{2}-6x+8}
|
midpoint (-2,-6)(-5,0)
|
midpoint\:(-2,-6)(-5,0)
|
asymptotes of f(x)=(2x-2)/(x+2)
|
asymptotes\:f(x)=\frac{2x-2}{x+2}
|
line Y=-X-1
|
line\:Y=-X-1
|
critical points of f(x)=5+1/4 x-1/2 x^2
|
critical\:points\:f(x)=5+\frac{1}{4}x-\frac{1}{2}x^{2}
|
perpendicular y=-6x-7,\at (-6,-7)
|
perpendicular\:y=-6x-7,\at\:(-6,-7)
|
periodicity of f(x)=sec(2x)
|
periodicity\:f(x)=\sec(2x)
|
parity \sqrt[3]{2x^2+1}
|
parity\:\sqrt[3]{2x^{2}+1}
|
critical points of f(x)=-3x^5+5x^3
|
critical\:points\:f(x)=-3x^{5}+5x^{3}
|
slope intercept of 3y-3x=21
|
slope\:intercept\:3y-3x=21
|
asymptotes of (-x^2+8)\div (2x^2-3)
|
asymptotes\:(-x^{2}+8)\div\:(2x^{2}-3)
|
midpoint (-2,5),(2,-3)
|
midpoint\:(-2,5),(2,-3)
|
inverse of f(x)=10^x
|
inverse\:f(x)=10^{x}
|
inverse of f(x)=tan(x)
|
inverse\:f(x)=\tan(x)
|
inflection points of y=x^5-5x^4+8
|
inflection\:points\:y=x^{5}-5x^{4}+8
|
domain of sqrt(1-x^2)
|
domain\:\sqrt{1-x^{2}}
|
domain of f(x)=x^4+4x^3-16x+3
|
domain\:f(x)=x^{4}+4x^{3}-16x+3
|
-3x^2+3x-13
|
-3x^{2}+3x-13
|
asymptotes of tan(3(x-(pi)/3))-2
|
asymptotes\:\tan(3(x-\frac{\pi}{3}))-2
|
domain of f(x)=-4x^2-6x+2
|
domain\:f(x)=-4x^{2}-6x+2
|
asymptotes of f(x)= 2/(x-7)
|
asymptotes\:f(x)=\frac{2}{x-7}
|
domain of f(x)=(\sqrt[6]{x})^5
|
domain\:f(x)=(\sqrt[6]{x})^{5}
|
domain of sqrt(36-x^2)-sqrt(x+3)
|
domain\:\sqrt{36-x^{2}}-\sqrt{x+3}
|
inverse of 5x
|
inverse\:5x
|
symmetry y=x^3
|
symmetry\:y=x^{3}
|
inverse of f(x)=(7x)/(x+3)
|
inverse\:f(x)=\frac{7x}{x+3}
|
amplitude of 1/6 cos(7x)
|
amplitude\:\frac{1}{6}\cos(7x)
|
inverse of f(x)= 1/9*(2*x*(x+1)-x-10)+1
|
inverse\:f(x)=\frac{1}{9}\cdot\:(2\cdot\:x\cdot\:(x+1)-x-10)+1
|
monotone intervals f(x)=(x^2)/2+1/x
|
monotone\:intervals\:f(x)=\frac{x^{2}}{2}+\frac{1}{x}
|
slope of 4x+6y=-5
|
slope\:4x+6y=-5
|
y=5^x
|
y=5^{x}
|
extreme points of f(x)=(12*x^2-60x+44)
|
extreme\:points\:f(x)=(12\cdot\:x^{2}-60x+44)
|
range of f(x)=x^4-29x^2+100
|
range\:f(x)=x^{4}-29x^{2}+100
|
inverse of f(x)=(e^x)/(1+5e^x)
|
inverse\:f(x)=\frac{e^{x}}{1+5e^{x}}
|
slope of 2x+y-3=0
|
slope\:2x+y-3=0
|
slope of f(x)=2x-3
|
slope\:f(x)=2x-3
|
critical points of f(x)=5+x^{2/5}
|
critical\:points\:f(x)=5+x^{\frac{2}{5}}
|
domain of g(x)= 1/(x-3)
|
domain\:g(x)=\frac{1}{x-3}
|
inverse of f(x)=sqrt(5-x)+3
|
inverse\:f(x)=\sqrt{5-x}+3
|
intercepts of (x-1)/(x^2-16)
|
intercepts\:\frac{x-1}{x^{2}-16}
|
symmetry x^2+2x-3
|
symmetry\:x^{2}+2x-3
|
inverse of f(x)= x/6+3
|
inverse\:f(x)=\frac{x}{6}+3
|
symmetry x^2-6x+3
|
symmetry\:x^{2}-6x+3
|
inverse of f(x)=8x^2+4
|
inverse\:f(x)=8x^{2}+4
|
midpoint (2,0)(0,10)
|
midpoint\:(2,0)(0,10)
|
domain of f(x)=(x^2-3x+2)/(x^2+1)
|
domain\:f(x)=\frac{x^{2}-3x+2}{x^{2}+1}
|
domain of f(x)=(9-e^{x^2})/(1-e^{9-x^2)}
|
domain\:f(x)=\frac{9-e^{x^{2}}}{1-e^{9-x^{2}}}
|
perpendicular 2x=3,\at-4y=12
|
perpendicular\:2x=3,\at\:-4y=12
|
domain of sqrt(5/(x+6))
|
domain\:\sqrt{\frac{5}{x+6}}
|
inverse of f(x)=x2
|
inverse\:f(x)=x2
|