inverse of f(x)=((x-2))/(x+2)
|
inverse\:f(x)=\frac{(x-2)}{x+2}
|
range of (8-x^3)/(2x^2)
|
range\:\frac{8-x^{3}}{2x^{2}}
|
line (4,-4),(-6,-4)
|
line\:(4,-4),(-6,-4)
|
domain of f(x)=-4x^2-2x+1
|
domain\:f(x)=-4x^{2}-2x+1
|
shift cos(6x)
|
shift\:\cos(6x)
|
intercepts of f(x)=x^2+6x+5
|
intercepts\:f(x)=x^{2}+6x+5
|
domain of f(x)= x/(x^3-8)
|
domain\:f(x)=\frac{x}{x^{3}-8}
|
asymptotes of f(x)=-4tan(2x)
|
asymptotes\:f(x)=-4\tan(2x)
|
domain of (3x+8)/(2x-3)
|
domain\:\frac{3x+8}{2x-3}
|
monotone intervals f(x)=(x+1)/(x-1)
|
monotone\:intervals\:f(x)=\frac{x+1}{x-1}
|
range of 3x^2
|
range\:3x^{2}
|
slope intercept of y-2=-5(x-2)
|
slope\:intercept\:y-2=-5(x-2)
|
inverse of f(x)=((7-14x))/((2x-3))
|
inverse\:f(x)=\frac{(7-14x)}{(2x-3)}
|
inverse of f(x)=(7x+3)/(3x+4)
|
inverse\:f(x)=\frac{7x+3}{3x+4}
|
intercepts of 3x+5/2
|
intercepts\:3x+\frac{5}{2}
|
inflection points of f(x)=0.5x^2-3x+4.5
|
inflection\:points\:f(x)=0.5x^{2}-3x+4.5
|
domain of f(x)= 14/4 x-15/2
|
domain\:f(x)=\frac{14}{4}x-\frac{15}{2}
|
domain of sqrt(x-10)
|
domain\:\sqrt{x-10}
|
inverse of-1.5sqrt(0.1(x+6.222))+0.3
|
inverse\:-1.5\sqrt{0.1(x+6.222)}+0.3
|
critical points of cos(x)-1
|
critical\:points\:\cos(x)-1
|
inverse of f(x)=(3x+2)/(5-x)
|
inverse\:f(x)=\frac{3x+2}{5-x}
|
inverse of f(x)=(2x+5)/(-3x+1)
|
inverse\:f(x)=\frac{2x+5}{-3x+1}
|
inverse of f(x)=5-7x^3
|
inverse\:f(x)=5-7x^{3}
|
periodicity of =cot(21pi)
|
periodicity\:=\cot(21\pi)
|
inverse of 1/(x+11)
|
inverse\:\frac{1}{x+11}
|
inverse of f(x)=x^2+12x
|
inverse\:f(x)=x^{2}+12x
|
inverse of f(x)=(x^7)/7
|
inverse\:f(x)=\frac{x^{7}}{7}
|
asymptotes of f(x)=(2x^2)/(x^2-9)
|
asymptotes\:f(x)=\frac{2x^{2}}{x^{2}-9}
|
slope intercept of y=-x+3
|
slope\:intercept\:y=-x+3
|
inverse of f(x)=(2x)/(x-2)
|
inverse\:f(x)=\frac{2x}{x-2}
|
domain of f(x)= 6/(x-8)
|
domain\:f(x)=\frac{6}{x-8}
|
domain of (x^2)/(x-1)
|
domain\:\frac{x^{2}}{x-1}
|
domain of f(x)=(x-1)/(x+1)
|
domain\:f(x)=\frac{x-1}{x+1}
|
inflection points of f(x)=(x+4)/x
|
inflection\:points\:f(x)=\frac{x+4}{x}
|
x^2+25
|
x^{2}+25
|
domain of f(x)=-sqrt(x^2-1)
|
domain\:f(x)=-\sqrt{x^{2}-1}
|
critical points of cot(x)
|
critical\:points\:\cot(x)
|
intercepts of f(x)=2x-3
|
intercepts\:f(x)=2x-3
|
domain of f(x)=x^2-6x+4
|
domain\:f(x)=x^{2}-6x+4
|
symmetry x^3-64
|
symmetry\:x^{3}-64
|
critical points of f(x)= 1/(x+2)
|
critical\:points\:f(x)=\frac{1}{x+2}
|
inverse of f(x)=5^{x+1}-2
|
inverse\:f(x)=5^{x+1}-2
|
critical points of f(x)=x^4-2x^3
|
critical\:points\:f(x)=x^{4}-2x^{3}
|
range of f(x)=-3^{1/2 x}
|
range\:f(x)=-3^{\frac{1}{2}x}
|
range of f(x)= 1/(x+3)
|
range\:f(x)=\frac{1}{x+3}
|
domain of f(x)=(sqrt(x+5))/(x-8)
|
domain\:f(x)=\frac{\sqrt{x+5}}{x-8}
|
range of sqrt(x)-5
|
range\:\sqrt{x}-5
|
extreme points of f(x)=-x^3+4x^2+3
|
extreme\:points\:f(x)=-x^{3}+4x^{2}+3
|
inverse of f(x)=((x+4))/((x-3))
|
inverse\:f(x)=\frac{(x+4)}{(x-3)}
|
domain of (sqrt(16-x^2))/(sqrt(x+2))
|
domain\:\frac{\sqrt{16-x^{2}}}{\sqrt{x+2}}
|
inflection points of f(x)=4x^3-48x-3
|
inflection\:points\:f(x)=4x^{3}-48x-3
|
domain of (x-2)^3+3
|
domain\:(x-2)^{3}+3
|
amplitude of sin(pi x)+5
|
amplitude\:\sin(\pi\:x)+5
|
asymptotes of y= 1/(x+3)-7
|
asymptotes\:y=\frac{1}{x+3}-7
|
inverse of f(x)=e^{3x+1}
|
inverse\:f(x)=e^{3x+1}
|
domain of y=x-1
|
domain\:y=x-1
|
range of-1/2 x^2-5x-15/2
|
range\:-\frac{1}{2}x^{2}-5x-\frac{15}{2}
|
slope of f(x)=x-5
|
slope\:f(x)=x-5
|
symmetry y=x2-2x-8
|
symmetry\:y=x2-2x-8
|
asymptotes of f(x)=2e^{3x+4}+5
|
asymptotes\:f(x)=2e^{3x+4}+5
|
slope intercept of-3
|
slope\:intercept\:-3
|
domain of f(x)=(x+4)/(x+1)
|
domain\:f(x)=\frac{x+4}{x+1}
|
range of x^2-7x
|
range\:x^{2}-7x
|
distance (1,-6)(-1,-3)
|
distance\:(1,-6)(-1,-3)
|
intercepts of f(x)=x^2+3x-10
|
intercepts\:f(x)=x^{2}+3x-10
|
inflection points of 3x^4-24x^3+48x^2
|
inflection\:points\:3x^{4}-24x^{3}+48x^{2}
|
midpoint (6,-7)(6,3)
|
midpoint\:(6,-7)(6,3)
|
domain of y=(2x-3)/(12-|x-12|)
|
domain\:y=\frac{2x-3}{12-|x-12|}
|
domain of f(x)=(x-6)/(x^2-16)
|
domain\:f(x)=\frac{x-6}{x^{2}-16}
|
extreme points of t^2+2t-48
|
extreme\:points\:t^{2}+2t-48
|
inverse of 2/(x-2)
|
inverse\:\frac{2}{x-2}
|
parity f(x)= x/(1-2^x)-x/2
|
parity\:f(x)=\frac{x}{1-2^{x}}-\frac{x}{2}
|
domain of f(x)=(4x-3)/(6-3x)
|
domain\:f(x)=\frac{4x-3}{6-3x}
|
inverse of (x-2)/(x+3)
|
inverse\:\frac{x-2}{x+3}
|
inflection points of f(x)=x^2(5-4x)^2
|
inflection\:points\:f(x)=x^{2}(5-4x)^{2}
|
symmetry y=-3x^2-24x-42
|
symmetry\:y=-3x^{2}-24x-42
|
symmetry x^2+4x-12
|
symmetry\:x^{2}+4x-12
|
line (100,0)(0,-20)
|
line\:(100,0)(0,-20)
|
asymptotes of (-x^2)/(x+1)
|
asymptotes\:\frac{-x^{2}}{x+1}
|
slope of y=-x+3
|
slope\:y=-x+3
|
inverse of f(x)=(x^{1/2})/4
|
inverse\:f(x)=\frac{x^{\frac{1}{2}}}{4}
|
inflection points of 7-6x^2-x^3
|
inflection\:points\:7-6x^{2}-x^{3}
|
slope of 10x+4y=-4
|
slope\:10x+4y=-4
|
asymptotes of f(x)=(2x^2+3)/(x^2-6)
|
asymptotes\:f(x)=\frac{2x^{2}+3}{x^{2}-6}
|
domain of \sqrt[3]{((x-1))/2}
|
domain\:\sqrt[3]{\frac{(x-1)}{2}}
|
asymptotes of f(x)=(x^2-1)/(x^4-16)
|
asymptotes\:f(x)=\frac{x^{2}-1}{x^{4}-16}
|
parity f(x)=((sin(x)))/(x^2+1)
|
parity\:f(x)=\frac{(\sin(x))}{x^{2}+1}
|
critical points of f(x)=(y-1)/(y^2-3y+3)
|
critical\:points\:f(x)=\frac{y-1}{y^{2}-3y+3}
|
distance (-8,0)(-6,-6)
|
distance\:(-8,0)(-6,-6)
|
inverse of (x-1)/3
|
inverse\:\frac{x-1}{3}
|
domain of x^3+5
|
domain\:x^{3}+5
|
inverse of f(x)=1.5
|
inverse\:f(x)=1.5
|
asymptotes of f(x)=(2x^3)/(x^4-1)
|
asymptotes\:f(x)=\frac{2x^{3}}{x^{4}-1}
|
domain of f(x)=3x^2-12x-1
|
domain\:f(x)=3x^{2}-12x-1
|
domain of 1/(2x^{(3)}-7x)
|
domain\:1/(2x^{(3)}-7x)
|
range of f(x)=-x^2+4x-6
|
range\:f(x)=-x^{2}+4x-6
|
inverse of (5)
|
inverse\:(5)
|
inverse of f(x)=2+\sqrt[3]{x}
|
inverse\:f(x)=2+\sqrt[3]{x}
|
domain of f(x)= 1/(\frac{1){sqrt(x)}}
|
domain\:f(x)=\frac{1}{\frac{1}{\sqrt{x}}}
|
inverse of f(x)=log_{3}(4x)
|
inverse\:f(x)=\log_{3}(4x)
|