extreme f(x)=(2x)/(x^2-9)
|
extreme\:f(x)=\frac{2x}{x^{2}-9}
|
extreme f(x,y)=y^3+3x^2y-6x^2-6y^2+2
|
extreme\:f(x,y)=y^{3}+3x^{2}y-6x^{2}-6y^{2}+2
|
f(x,y)=4xy-x^4-2y^2
|
f(x,y)=4xy-x^{4}-2y^{2}
|
f(x,y)=4x^2+2y^2-2xy-10y-2x
|
f(x,y)=4x^{2}+2y^{2}-2xy-10y-2x
|
extreme (x-y)(9-xy)
|
extreme\:(x-y)(9-xy)
|
extreme f(x)=15x^4+8x^3-18x^2+1
|
extreme\:f(x)=15x^{4}+8x^{3}-18x^{2}+1
|
f(x)=e^{xy}
|
f(x)=e^{xy}
|
intercepts (x+8)/(x^2-5x-24)
|
intercepts\:\frac{x+8}{x^{2}-5x-24}
|
f(x,y)=2x^4+5xy^2+y+2
|
f(x,y)=2x^{4}+5xy^{2}+y+2
|
f(x,y)=y^2+xy+3y+2x+3
|
f(x,y)=y^{2}+xy+3y+2x+3
|
extreme ln(x-y)+x^2+y
|
extreme\:\ln(x-y)+x^{2}+y
|
extreme f(x)=x^{101}+x^{51}+x+1
|
extreme\:f(x)=x^{101}+x^{51}+x+1
|
f(x,y)=x^2y-3xy^2
|
f(x,y)=x^{2}y-3xy^{2}
|
f(x,y)=5+3x^2+3y^2+2y^3+x^3
|
f(x,y)=5+3x^{2}+3y^{2}+2y^{3}+x^{3}
|
f(x,y)=3x^2+5xy-7y^2+1
|
f(x,y)=3x^{2}+5xy-7y^{2}+1
|
extreme x+4/x
|
extreme\:x+\frac{4}{x}
|
extreme f(x)=x^4+4/x
|
extreme\:f(x)=x^{4}+\frac{4}{x}
|
extreme f(x)=((x+1)^3)/((x-1)^2)
|
extreme\:f(x)=\frac{(x+1)^{3}}{(x-1)^{2}}
|
amplitude 3cos(x-pi)
|
amplitude\:3\cos(x-\pi)
|
extreme f(x)=x^3-3x+1,0<= x<= 3
|
extreme\:f(x)=x^{3}-3x+1,0\le\:x\le\:3
|
extreme f(x)=-x^3+3x^2-1
|
extreme\:f(x)=-x^{3}+3x^{2}-1
|
extreme f(x)=x^3+2x^2-x+8
|
extreme\:f(x)=x^{3}+2x^{2}-x+8
|
extreme f(x)= 1/3 x^3-4x^2+12x-5
|
extreme\:f(x)=\frac{1}{3}x^{3}-4x^{2}+12x-5
|
extreme (x^2-1)/(x^2+1)
|
extreme\:\frac{x^{2}-1}{x^{2}+1}
|
extreme f(x)=xsqrt(2-x)
|
extreme\:f(x)=x\sqrt{2-x}
|
extreme f(x)=3-(x+1)^3
|
extreme\:f(x)=3-(x+1)^{3}
|
f(x,y,z)=x+ysqrt(2)+xsqrt(3)
|
f(x,y,z)=x+y\sqrt{2}+x\sqrt{3}
|
extreme f(x)=(x^2+x-38)/(x^2-25)
|
extreme\:f(x)=\frac{x^{2}+x-38}{x^{2}-25}
|
extreme f(x)=cos(2x)
|
extreme\:f(x)=\cos(2x)
|
asymptotes (2x^2)/(x+3)
|
asymptotes\:\frac{2x^{2}}{x+3}
|
domain sin(7x),0<= x<= 2pi
|
domain\:\sin(7x),0\le\:x\le\:2\pi
|
extreme x^4-8x^2
|
extreme\:x^{4}-8x^{2}
|
extreme f(x)=x^{4/3}+4x^{1/3}
|
extreme\:f(x)=x^{\frac{4}{3}}+4x^{\frac{1}{3}}
|
extreme h(x)=-3x^5+5x^3
|
extreme\:h(x)=-3x^{5}+5x^{3}
|
extreme f(x)=ln(5-2x^2)
|
extreme\:f(x)=\ln(5-2x^{2})
|
extreme f(x)=2x^3-11/2 x^2-10x+2
|
extreme\:f(x)=2x^{3}-\frac{11}{2}x^{2}-10x+2
|
extreme f(x,y)=8y^2+5x^2-10y+6x-10
|
extreme\:f(x,y)=8y^{2}+5x^{2}-10y+6x-10
|
extreme f(x)=8x^5-120x^3+43
|
extreme\:f(x)=8x^{5}-120x^{3}+43
|
extreme f(x)=(x^2)/(x^4+1)
|
extreme\:f(x)=\frac{x^{2}}{x^{4}+1}
|
extreme y= x/(x^2+1)
|
extreme\:y=\frac{x}{x^{2}+1}
|
extreme f(x)=-x^3+7x^2-15x
|
extreme\:f(x)=-x^{3}+7x^{2}-15x
|
intercepts f(x)=5(x+8)-4
|
intercepts\:f(x)=5(x+8)-4
|
extreme f(x)=(8x)^3-(5x)^2-3x
|
extreme\:f(x)=(8x)^{3}-(5x)^{2}-3x
|
extreme f(x)=2
|
extreme\:f(x)=2
|
f(x,y)=3x^3+xy^2-2xy+1
|
f(x,y)=3x^{3}+xy^{2}-2xy+1
|
extreme g(x)=x^3-3x^2+3
|
extreme\:g(x)=x^{3}-3x^{2}+3
|
extreme x^3-3/2 x^2
|
extreme\:x^{3}-\frac{3}{2}x^{2}
|
extreme f(x)=(e^{-2x}(-e^x+1))/((1+e^{-x))^3}
|
extreme\:f(x)=\frac{e^{-2x}(-e^{x}+1)}{(1+e^{-x})^{3}}
|
f(x,y)=(x^2+y)/(xy-1)
|
f(x,y)=\frac{x^{2}+y}{xy-1}
|
f(x,y)=x^2+xy+y^2-3x-6y+1
|
f(x,y)=x^{2}+xy+y^{2}-3x-6y+1
|
extreme (x-5)/(x^2)
|
extreme\:\frac{x-5}{x^{2}}
|
extreme x^4-18x^2
|
extreme\:x^{4}-18x^{2}
|
range-x^2+10x
|
range\:-x^{2}+10x
|
extreme f(x)=(x^2)/(x^2-5)
|
extreme\:f(x)=\frac{x^{2}}{x^{2}-5}
|
extreme 3x^4-4x^3
|
extreme\:3x^{4}-4x^{3}
|
extreme f(x,y)=xy-2x-2y-x^2-y^2
|
extreme\:f(x,y)=xy-2x-2y-x^{2}-y^{2}
|
extreme f(x)=x^2*e^{-x}
|
extreme\:f(x)=x^{2}\cdot\:e^{-x}
|
extreme y=x^2-4x
|
extreme\:y=x^{2}-4x
|
f(x,y)=(x+y)/(x^2-y^2)
|
f(x,y)=\frac{x+y}{x^{2}-y^{2}}
|
extreme f(x)=3x^2-12x+9
|
extreme\:f(x)=3x^{2}-12x+9
|
extreme f(x)= 10/3 x^3-x^2-8x+48
|
extreme\:f(x)=\frac{10}{3}x^{3}-x^{2}-8x+48
|
extreme f(x)=xe^{-6x}
|
extreme\:f(x)=xe^{-6x}
|
f(x,y)=xy-2x-y
|
f(x,y)=xy-2x-y
|
domain f(x)=(sqrt(6x-2))/(x^2-36)
|
domain\:f(x)=\frac{\sqrt{6x-2}}{x^{2}-36}
|
extreme f(x)=x^2-6x-7
|
extreme\:f(x)=x^{2}-6x-7
|
extreme f(x)=x^3-9x^2
|
extreme\:f(x)=x^{3}-9x^{2}
|
extreme f(x)=xe^{5x^2}
|
extreme\:f(x)=xe^{5x^{2}}
|
f(x,y)=8x^2+14xy+3y^2+10x-4
|
f(x,y)=8x^{2}+14xy+3y^{2}+10x-4
|
extreme (x^2+10)(9-x^2)
|
extreme\:(x^{2}+10)(9-x^{2})
|
f(x,y)=x^2+y^2-2x+6y+10
|
f(x,y)=x^{2}+y^{2}-2x+6y+10
|
extreme f(x)= 1/5 x^5-1/4 x^4-2x^3
|
extreme\:f(x)=\frac{1}{5}x^{5}-\frac{1}{4}x^{4}-2x^{3}
|
extreme f(x)=x^3-12x^2+48x-2
|
extreme\:f(x)=x^{3}-12x^{2}+48x-2
|
f(x)= 1/2 y^4-4xy+2x^4
|
f(x)=\frac{1}{2}y^{4}-4xy+2x^{4}
|
extreme 30x-28ln(x)
|
extreme\:30x-28\ln(x)
|
extreme points f(x)=x^3/(x^2-3)
|
extreme\:points\:f(x)=x^{3}/(x^{2}-3)
|
f(x,y)=9-x^2-y^2
|
f(x,y)=9-x^{2}-y^{2}
|
extreme f(x)=e^{x^2-9x-1}
|
extreme\:f(x)=e^{x^{2}-9x-1}
|
extreme f(x,y)=5+2xy+(20)/x+(25)/y
|
extreme\:f(x,y)=5+2xy+\frac{20}{x}+\frac{25}{y}
|
extreme f(x,y)=4xy-x^4-2y^2+2
|
extreme\:f(x,y)=4xy-x^{4}-2y^{2}+2
|
extreme f(x)=xsqrt(32-x^2)
|
extreme\:f(x)=x\sqrt{32-x^{2}}
|
extreme x*ln(x)
|
extreme\:x\cdot\:\ln(x)
|
extreme f(x)=x^2+xy+y^2
|
extreme\:f(x)=x^{2}+xy+y^{2}
|
f(x,y)=3+xy-x-2y
|
f(x,y)=3+xy-x-2y
|
f(x,y)=x^3+6xy+y^3+3
|
f(x,y)=x^{3}+6xy+y^{3}+3
|
f(x,y)=3xy^2-2y+5x^2y^2
|
f(x,y)=3xy^{2}-2y+5x^{2}y^{2}
|
inverse f(x)=(2x+9)/(x-1)
|
inverse\:f(x)=\frac{2x+9}{x-1}
|
extreme f(x)=x^{2/3}(x^2-8)
|
extreme\:f(x)=x^{\frac{2}{3}}(x^{2}-8)
|
extreme x^4-6x^2
|
extreme\:x^{4}-6x^{2}
|
extreme f(x)=x^2-8x+12
|
extreme\:f(x)=x^{2}-8x+12
|
extreme f(x)=x^3-3x^2-9x+7
|
extreme\:f(x)=x^{3}-3x^{2}-9x+7
|
extreme f(x)=x^3-3x^2-9x+4
|
extreme\:f(x)=x^{3}-3x^{2}-9x+4
|
extreme x/(ln(x))
|
extreme\:\frac{x}{\ln(x)}
|
f(x)=x^3-3xy-y^2
|
f(x)=x^{3}-3xy-y^{2}
|
extreme f(x)=x^2-4x+2
|
extreme\:f(x)=x^{2}-4x+2
|
extreme x^2-4x+5
|
extreme\:x^{2}-4x+5
|
extreme f(x)=e^{-3.5x^2}
|
extreme\:f(x)=e^{-3.5x^{2}}
|
extreme points f(x)=4-x+x^2
|
extreme\:points\:f(x)=4-x+x^{2}
|
extreme f(x)=6x^4+16x^3
|
extreme\:f(x)=6x^{4}+16x^{3}
|
f(x,y)=8-2x^2-2y^2
|
f(x,y)=8-2x^{2}-2y^{2}
|
f(x,y)=4ysqrt(x)
|
f(x,y)=4y\sqrt{x}
|