y=x+z
|
y=x+z
|
extreme f(x)=ln((3x-1)/(x+2))
|
extreme\:f(x)=\ln(\frac{3x-1}{x+2})
|
extreme f(x)=x+(32)/(x^2)
|
extreme\:f(x)=x+\frac{32}{x^{2}}
|
f(x,y)=5x^2+5y^2+20x-10y+40
|
f(x,y)=5x^{2}+5y^{2}+20x-10y+40
|
extreme f(x)=xe^{1/x}
|
extreme\:f(x)=xe^{\frac{1}{x}}
|
y=2x+z
|
y=2x+z
|
extreme f(x)=x^3+x-3
|
extreme\:f(x)=x^{3}+x-3
|
inflection points 2x^4-12x^2
|
inflection\:points\:2x^{4}-12x^{2}
|
extreme e^x(15-x^2)
|
extreme\:e^{x}(15-x^{2})
|
extreme f(x)=-2/5 x^5-5x^4-16x^3-5
|
extreme\:f(x)=-\frac{2}{5}x^{5}-5x^{4}-16x^{3}-5
|
g(x,y)=sqrt(16-x^2+y^2)
|
g(x,y)=\sqrt{16-x^{2}+y^{2}}
|
extreme f(x)=e^{-x-y}
|
extreme\:f(x)=e^{-x-y}
|
extreme f(x)=x^4-x^2
|
extreme\:f(x)=x^{4}-x^{2}
|
extreme f(x)=(1+x^2)/x
|
extreme\:f(x)=\frac{1+x^{2}}{x}
|
f(x,y)=2x^2+4xy+6y^2-8x-10
|
f(x,y)=2x^{2}+4xy+6y^{2}-8x-10
|
extreme f(x,y)=xe^{-2x^2-2y^2}
|
extreme\:f(x,y)=xe^{-2x^{2}-2y^{2}}
|
extreme f(x)=x^3-48x
|
extreme\:f(x)=x^{3}-48x
|
4xy
|
4xy
|
domain 1/(x^2-10x+15)
|
domain\:\frac{1}{x^{2}-10x+15}
|
parity f(x)=(|x|)/(x^2+1)
|
parity\:f(x)=\frac{|x|}{x^{2}+1}
|
extreme f(x)=(-2x^2+5x-1)/(2x-1)
|
extreme\:f(x)=\frac{-2x^{2}+5x-1}{2x-1}
|
f(x)=sqrt(100-x^2-y^2)
|
f(x)=\sqrt{100-x^{2}-y^{2}}
|
extreme f(x)=x^2(x+1)^3
|
extreme\:f(x)=x^{2}(x+1)^{3}
|
f(x,y)=x^3-3xy+3y^2+1
|
f(x,y)=x^{3}-3xy+3y^{2}+1
|
extreme f(x)=x^2ln(x/8)
|
extreme\:f(x)=x^{2}\ln(\frac{x}{8})
|
extreme f(x,y)=4x^2+2y^2-2xy-10y-2x
|
extreme\:f(x,y)=4x^{2}+2y^{2}-2xy-10y-2x
|
extreme f(x)=(x+2)^2
|
extreme\:f(x)=(x+2)^{2}
|
extreme f(x)=cos^2(x)-2sin(x)
|
extreme\:f(x)=\cos^{2}(x)-2\sin(x)
|
extreme f(x)= x/(x^2+1),0<= x<= 2
|
extreme\:f(x)=\frac{x}{x^{2}+1},0\le\:x\le\:2
|
extreme f(x)=(x^3)/3-2x^2-12x
|
extreme\:f(x)=\frac{x^{3}}{3}-2x^{2}-12x
|
inverse f(x)=1+cos(x)
|
inverse\:f(x)=1+\cos(x)
|
10xy
|
10xy
|
f(x,y)=sqrt(64-x^2-y^2)
|
f(x,y)=\sqrt{64-x^{2}-y^{2}}
|
extreme f(x)=x^3+6x^2-15x
|
extreme\:f(x)=x^{3}+6x^{2}-15x
|
extreme f(x)=3x^4+4x^3-12x^2+10
|
extreme\:f(x)=3x^{4}+4x^{3}-12x^{2}+10
|
extreme xsqrt(4-x)
|
extreme\:x\sqrt{4-x}
|
extreme f(x)=x^2+8x+19
|
extreme\:f(x)=x^{2}+8x+19
|
f(x,y)=x^3+y^3+3xy
|
f(x,y)=x^{3}+y^{3}+3xy
|
extreme f(x,y)=x^3+y^2-6xy+6x+3y
|
extreme\:f(x,y)=x^{3}+y^{2}-6xy+6x+3y
|
f(x)=x^2+xy+y^2
|
f(x)=x^{2}+xy+y^{2}
|
extreme 2x^2ln(x)
|
extreme\:2x^{2}\ln(x)
|
domain-x^4+7x^2-12
|
domain\:-x^{4}+7x^{2}-12
|
f(x,y)=x^2+3y^2
|
f(x,y)=x^{2}+3y^{2}
|
extreme f(x,y)=7+x+4y-x^2-4y^2
|
extreme\:f(x,y)=7+x+4y-x^{2}-4y^{2}
|
extreme f(x)=e^{x^2-4x-1},-4<= x<= 4
|
extreme\:f(x)=e^{x^{2}-4x-1},-4\le\:x\le\:4
|
extreme f(x)=e^x(x^2+1)
|
extreme\:f(x)=e^{x}(x^{2}+1)
|
extreme f(x)=(x-2)(x+1)(x+5)
|
extreme\:f(x)=(x-2)(x+1)(x+5)
|
extreme f(x)=x^3-3x+6
|
extreme\:f(x)=x^{3}-3x+6
|
f(x,y)=2x^4+2y^4-xy
|
f(x,y)=2x^{4}+2y^{4}-xy
|
extreme f(x)= x/(x^2+2)
|
extreme\:f(x)=\frac{x}{x^{2}+2}
|
extreme x^3-3x^2+3
|
extreme\:x^{3}-3x^{2}+3
|
extreme (2x^2+5)/(x^2-25)
|
extreme\:\frac{2x^{2}+5}{x^{2}-25}
|
domain (2x)/(x-2)
|
domain\:\frac{2x}{x-2}
|
w(y,z)=p(y-z)
|
w(y,z)=p(y-z)
|
f(x,y)=sqrt(y)+sqrt(25-x^2-y^2)
|
f(x,y)=\sqrt{y}+\sqrt{25-x^{2}-y^{2}}
|
f(x,y)=(1-x)(1-y)(x+y-1)
|
f(x,y)=(1-x)(1-y)(x+y-1)
|
extreme f(x)=-6x^2+5xy-y^2+x+y
|
extreme\:f(x)=-6x^{2}+5xy-y^{2}+x+y
|
extreme x^4-2x^2+3
|
extreme\:x^{4}-2x^{2}+3
|
f(x,y)=ln(xy-x^3-y^3+x^2y^2)
|
f(x,y)=\ln(xy-x^{3}-y^{3}+x^{2}y^{2})
|
extreme f(x)=e^x(3-x^2)
|
extreme\:f(x)=e^{x}(3-x^{2})
|
f(x)=xln(y^2-x)
|
f(x)=x\ln(y^{2}-x)
|
extreme f(x)=-x^4+2x^2
|
extreme\:f(x)=-x^{4}+2x^{2}
|
extreme f(x)=x^3-12x^2
|
extreme\:f(x)=x^{3}-12x^{2}
|
inverse f(x)= 5/(3-x)
|
inverse\:f(x)=\frac{5}{3-x}
|
extreme f(x)=2x^3+3x^2-336x
|
extreme\:f(x)=2x^{3}+3x^{2}-336x
|
extreme y=x^4+6x^3+12x^2+8x+10
|
extreme\:y=x^{4}+6x^{3}+12x^{2}+8x+10
|
extreme f(x)=2x^3-3x^2-12x+4
|
extreme\:f(x)=2x^{3}-3x^{2}-12x+4
|
f(x,y)=x^2-2xy+3y^2
|
f(x,y)=x^{2}-2xy+3y^{2}
|
extreme f(x)=2x^3-24x
|
extreme\:f(x)=2x^{3}-24x
|
minimum x^2ln(x)
|
minimum\:x^{2}\ln(x)
|
extreme f(x)=3x^3-9x+1
|
extreme\:f(x)=3x^{3}-9x+1
|
extreme f(x)=(e^x)/(1+x^2)
|
extreme\:f(x)=\frac{e^{x}}{1+x^{2}}
|
extreme f(x,y)=6xy-2x^2y-3xy^2
|
extreme\:f(x,y)=6xy-2x^{2}y-3xy^{2}
|
extreme f(x)=3x^3+8
|
extreme\:f(x)=3x^{3}+8
|
asymptotes f(x)=(x-3)/(x-6)
|
asymptotes\:f(x)=\frac{x-3}{x-6}
|
f(x,y)=x^2+3xy
|
f(x,y)=x^{2}+3xy
|
extreme f(x)=(x^2-1)^3,-1<= x<= 2
|
extreme\:f(x)=(x^{2}-1)^{3},-1\le\:x\le\:2
|
extreme f(x)=x(1-x^2)^2
|
extreme\:f(x)=x(1-x^{2})^{2}
|
extreme f(x)=x^3-12x^2-27x-26
|
extreme\:f(x)=x^{3}-12x^{2}-27x-26
|
extreme f(x)= 6/(x^2+3)
|
extreme\:f(x)=\frac{6}{x^{2}+3}
|
extreme f(x,y)=x^2-4xy+y^3+4y
|
extreme\:f(x,y)=x^{2}-4xy+y^{3}+4y
|
extreme f(x)=2x^3-9x^2+2
|
extreme\:f(x)=2x^{3}-9x^{2}+2
|
extreme f(x)=4x^3-x^2-14x-42
|
extreme\:f(x)=4x^{3}-x^{2}-14x-42
|
extreme f(x)=-cos(x)-sin(x)
|
extreme\:f(x)=-\cos(x)-\sin(x)
|
extreme f(x)=8x-x^2
|
extreme\:f(x)=8x-x^{2}
|
parity sec^2(x)*x
|
parity\:\sec^{2}(x)\cdot\:x
|
extreme f(x)=ln(x+2)(x-1)^2
|
extreme\:f(x)=\ln(x+2)(x-1)^{2}
|
extreme 2x^3-3x^2-12x
|
extreme\:2x^{3}-3x^{2}-12x
|
f(x,y)=x^2+2xy-xy^2-3
|
f(x,y)=x^{2}+2xy-xy^{2}-3
|
f(x,y)=4xy-x^2y-xy^2
|
f(x,y)=4xy-x^{2}y-xy^{2}
|
extreme f(x)= 1/4 x^4-2x^2
|
extreme\:f(x)=\frac{1}{4}x^{4}-2x^{2}
|
extreme f(x)=x^3(x-5)^2
|
extreme\:f(x)=x^{3}(x-5)^{2}
|
extreme f(x)=1+3x^2-2x^3
|
extreme\:f(x)=1+3x^{2}-2x^{3}
|
extreme f(x)= 1/4 x+3+(400)/x
|
extreme\:f(x)=\frac{1}{4}x+3+\frac{400}{x}
|
extreme f(x)=100+1/2 x+(1800)/x ,50<= x<= 100
|
extreme\:f(x)=100+\frac{1}{2}x+\frac{1800}{x},50\le\:x\le\:100
|
extreme f(x)=cos(x)-x
|
extreme\:f(x)=\cos(x)-x
|
inflection points x^4-16x^2
|
inflection\:points\:x^{4}-16x^{2}
|
f(x,y)=x+y+1
|
f(x,y)=x+y+1
|
extreme f(x,y)=x^2+3y-y^3
|
extreme\:f(x,y)=x^{2}+3y-y^{3}
|
extreme f(x)=(x^3)/3-x^2-3x
|
extreme\:f(x)=\frac{x^{3}}{3}-x^{2}-3x
|