Upgrade to Pro
Continue to site
Solutions
Graphing
Calculators
New
Geometry
Practice
Notebook
Groups
Cheat Sheets
Sign in
Upgrade
Upgrade
Account Details
Login Options
Account Management
Settings
Subscription
Logout
No new notifications
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Popular Functions & Graphing Problems
g(x)=(1/2)^x
g(x)=(\frac{1}{2})^{x}
f(x)=e^x+e^{2x}
f(x)=e^{x}+e^{2x}
y=3(x+5)^2-4
y=3(x+5)^{2}-4
f(m)=4m^2-3m^6+5m^4
f(m)=4m^{2}-3m^{6}+5m^{4}
inverse of f(x)=y=((x-4))/((x+1))
inverse\:f(x)=y=\frac{(x-4)}{(x+1)}
f(x)=(x-1)^2+1
f(x)=(x-1)^{2}+1
y=sin(e^x)
y=\sin(e^{x})
f(x)=5^{x+2}
f(x)=5^{x+2}
f(x)=cos(x^4)
f(x)=\cos(x^{4})
f(x)=-sqrt(x+2)
f(x)=-\sqrt{x+2}
f(x)=-x^2+6x-9
f(x)=-x^{2}+6x-9
sqrt(3y^2),y<0
\sqrt{3y^{2}},y<0
f(x)=10sqrt(x)
f(x)=10\sqrt{x}
f(x)=sqrt(x^4+1)
f(x)=\sqrt{x^{4}+1}
f(x)=x^3+x^2+x
f(x)=x^{3}+x^{2}+x
range of x^3-x
range\:x^{3}-x
f(x)=(x-2)^2-4
f(x)=(x-2)^{2}-4
y=log_{4}(2-x)-1
y=\log_{4}(2-x)-1
y=log_{10}(x+3)
y=\log_{10}(x+3)
f(x)=3sin(x)+1
f(x)=3\sin(x)+1
f(x)=-3/x
f(x)=-\frac{3}{x}
f(x)=sin^2(5x)
f(x)=\sin^{2}(5x)
y=cos(x)+2
y=\cos(x)+2
f(x)=5x^2-8x+9
f(x)=5x^{2}-8x+9
f(x)=sqrt(4x-2)
f(x)=\sqrt{4x-2}
f(x)=x^3-x^2-x
f(x)=x^{3}-x^{2}-x
domain of f(x)=-(x)^2
domain\:f(x)=-(x)^{2}
y=3^{x-1}
y=3^{x-1}
f(x)=2x^2+8x+17
f(x)=2x^{2}+8x+17
f(x)=(x+3)/(2x)
f(x)=\frac{x+3}{2x}
f(x)=(csc(x)-1)/(sin(x)-1)
f(x)=\frac{\csc(x)-1}{\sin(x)-1}
f(n)=log_{2}(n)
f(n)=\log_{2}(n)
y=-3/4 x
y=-\frac{3}{4}x
f(x)=(cos(x))/(x^2)
f(x)=\frac{\cos(x)}{x^{2}}
y=3sqrt(x+4)-2
y=3\sqrt{x+4}-2
y=x^3-6x^2+9x+1
y=x^{3}-6x^{2}+9x+1
f(x)=sqrt(2x-7)
f(x)=\sqrt{2x-7}
inverse of f(x)= 3/(2x+1)
inverse\:f(x)=\frac{3}{2x+1}
f(x)=3x^4-8x^3+6x^2
f(x)=3x^{4}-8x^{3}+6x^{2}
y=-3sin(2x-pi/4)
y=-3\sin(2x-\frac{π}{4})
f(x)=3sin(4x)
f(x)=3\sin(4x)
f(x)=(x^3+1)/(x^2)
f(x)=\frac{x^{3}+1}{x^{2}}
g(x)=|x|
g(x)=\left|x\right|
r(θ)=9cos(θ)
r(θ)=9\cos(θ)
f(x)=(2x^2-3)/(x+2)
f(x)=\frac{2x^{2}-3}{x+2}
f(x)=-x+7
f(x)=-x+7
f(x)=ln(x+7)
f(x)=\ln(x+7)
f(x)=2x^3-5
f(x)=2x^{3}-5
inverse of 3/(\frac{2){2+x}+2}
inverse\:\frac{3}{\frac{2}{2+x}+2}
f(x)=2x-3x^{2/3}
f(x)=2x-3x^{\frac{2}{3}}
f(t)=sin(t^2)
f(t)=\sin(t^{2})
y=2x^2+4x+1
y=2x^{2}+4x+1
f(x)=3-2x^2
f(x)=3-2x^{2}
f(x)= 2/(1-x^2)
f(x)=\frac{2}{1-x^{2}}
f(x)=-2x+9
f(x)=-2x+9
f(x)=-3x+9
f(x)=-3x+9
y=-2x^2+4x+3
y=-2x^{2}+4x+3
f(x)= 5/(x-4)
f(x)=\frac{5}{x-4}
y=x^2-5x+3
y=x^{2}-5x+3
monotone intervals f(x)=sqrt(49-x^2)
monotone\:intervals\:f(x)=\sqrt{49-x^{2}}
f(θ)=(sin(θ))/(1+cos(θ))
f(θ)=\frac{\sin(θ)}{1+\cos(θ)}
f(x)=x^2+8x+13
f(x)=x^{2}+8x+13
f(x)=x^2+8x+11
f(x)=x^{2}+8x+11
f(x)=sqrt(x)-5
f(x)=\sqrt{x}-5
f(x)=\sqrt[3]{x}+2
f(x)=\sqrt[3]{x}+2
f(x)=-16x^2
f(x)=-16x^{2}
f(x)=2x^2-3x-5
f(x)=2x^{2}-3x-5
f(x)= x/(x-7)
f(x)=\frac{x}{x-7}
y=x^2+2x+6
y=x^{2}+2x+6
r(θ)=2(1+cos(θ))
r(θ)=2(1+\cos(θ))
shift f(x)=3sin(1/2 x)
shift\:f(x)=3\sin(\frac{1}{2}x)
f(x)=3log_{4}(x)
f(x)=3\log_{4}(x)
{x\mid-1<x<= 3}
\left\{x\mid\:-1<x\le\:3\right\}
f(x)=-2x^2+4x+4
f(x)=-2x^{2}+4x+4
y=-2^{-x}
y=-2^{-x}
f(x)=2x^2-6x
f(x)=2x^{2}-6x
y= 3/4 x-1
y=\frac{3}{4}x-1
f(t)=(cos(t))/t
f(t)=\frac{\cos(t)}{t}
f(x)=(1-x)^{1/2}
f(x)=(1-x)^{\frac{1}{2}}
f(x)=3^x-3
f(x)=3^{x}-3
y=8x-3
y=8x-3
domain of =x^2-8x+16
domain\:=x^{2}-8x+16
intercepts of f(x)=5x+4y=-20
intercepts\:f(x)=5x+4y=-20
y=3x^2-3
y=3x^{2}-3
f(x)=sqrt(3x+6)
f(x)=\sqrt{3x+6}
f(x)=sqrt(x^2-36)
f(x)=\sqrt{x^{2}-36}
f(x)=x^{1/7}
f(x)=x^{\frac{1}{7}}
y=(x-4)^2+1
y=(x-4)^{2}+1
f(x)= 1/(x-7)
f(x)=\frac{1}{x-7}
f(x)=x^2-10x+9
f(x)=x^{2}-10x+9
f(x)=20x
f(x)=20x
f(x)=x^{log_{10}(x)}
f(x)=x^{\log_{10}(x)}
y=xsin(1/x)
y=x\sin(\frac{1}{x})
domain of f(x)=2sin(x)
domain\:f(x)=2\sin(x)
f(x)=2x^2+8x-3
f(x)=2x^{2}+8x-3
y=x^2-2x-35
y=x^{2}-2x-35
f(x)=x^2-8x-16
f(x)=x^{2}-8x-16
y=(x+3)/(x-2)
y=\frac{x+3}{x-2}
f(x)=-3x^2+6x-1
f(x)=-3x^{2}+6x-1
f(x)=ln|3x+2|
f(x)=\ln\left|3x+2\right|
1
..
799
800
801
802
803
804
805
..
1339
We want your feedback
(optional)
(optional)
Please add a message.
Message received. Thanks for the feedback.
Cancel
Send
Generating PDF...
Feedback