f(x,y)=x^3+3y^3+3x^2+3y^2+24
|
f(x,y)=x^{3}+3y^{3}+3x^{2}+3y^{2}+24
|
extreme f(x)=3x^2
|
extreme\:f(x)=3x^{2}
|
f(x)=sqrt(36-9x^2-4y^2)
|
f(x)=\sqrt{36-9x^{2}-4y^{2}}
|
extreme f(x)=-x^2+x-y^2-2y
|
extreme\:f(x)=-x^{2}+x-y^{2}-2y
|
extreme f(x)=2x^2(1-x^2)
|
extreme\:f(x)=2x^{2}(1-x^{2})
|
f(x)=x^2+sqrt(y)
|
f(x)=x^{2}+\sqrt{y}
|
extreme f(x,y)=x^2-y^2sqrt(1-x^2-y^2)
|
extreme\:f(x,y)=x^{2}-y^{2}\sqrt{1-x^{2}-y^{2}}
|
intercepts f(x)=(x-4)^2
|
intercepts\:f(x)=(x-4)^{2}
|
shift cos(3x)
|
shift\:\cos(3x)
|
extreme f(x,y)=12xy-x^3-6y^2
|
extreme\:f(x,y)=12xy-x^{3}-6y^{2}
|
extreme x^2+2x
|
extreme\:x^{2}+2x
|
extreme f(x)=x^3+y^3+3x^2-3y^2-8
|
extreme\:f(x)=x^{3}+y^{3}+3x^{2}-3y^{2}-8
|
extreme f(x)=sqrt((x-4)^2+1)+3
|
extreme\:f(x)=\sqrt{(x-4)^{2}+1}+3
|
extreme x^2y+y^3-75y
|
extreme\:x^{2}y+y^{3}-75y
|
extreme f(x)=x^2-10x
|
extreme\:f(x)=x^{2}-10x
|
extreme y=(x^2)/(x^2-1)
|
extreme\:y=\frac{x^{2}}{x^{2}-1}
|
extreme f(x)=6x-4y-x^2-2y^2
|
extreme\:f(x)=6x-4y-x^{2}-2y^{2}
|
extreme f(x)=x^4-6x^2+9
|
extreme\:f(x)=x^{4}-6x^{2}+9
|
extreme f(x)=x^4-4x^2+4
|
extreme\:f(x)=x^{4}-4x^{2}+4
|
domain f(x)= 2/(x+3)
|
domain\:f(x)=\frac{2}{x+3}
|
extreme f(x)=-x^2+8x-15
|
extreme\:f(x)=-x^{2}+8x-15
|
extreme f(x)=x^{4/5}(9-4x),0<= x<= 2
|
extreme\:f(x)=x^{\frac{4}{5}}(9-4x),0\le\:x\le\:2
|
extreme f(x)=-4x^2
|
extreme\:f(x)=-4x^{2}
|
extreme f(x)=2x^3-13x^2+24x-28
|
extreme\:f(x)=2x^{3}-13x^{2}+24x-28
|
extreme x^4-4x^3+10
|
extreme\:x^{4}-4x^{3}+10
|
f(x,y)=x^3-y^3-2xy+7
|
f(x,y)=x^{3}-y^{3}-2xy+7
|
f(x,y)=(x^2+y^2)e^{y^2-x^2}
|
f(x,y)=(x^{2}+y^{2})e^{y^{2}-x^{2}}
|
f(x,y)=x^2+2y^2+2x+3
|
f(x,y)=x^{2}+2y^{2}+2x+3
|
extreme f(x)=3x-2x^2-(4x^3)/3
|
extreme\:f(x)=3x-2x^{2}-\frac{4x^{3}}{3}
|
f(x,y)=2x^2+3y^2-7
|
f(x,y)=2x^{2}+3y^{2}-7
|
inverse f(x)=(x^2-9)/(8x^2)
|
inverse\:f(x)=\frac{x^{2}-9}{8x^{2}}
|
extreme f(x)=(x^2+4)/x
|
extreme\:f(x)=\frac{x^{2}+4}{x}
|
f(x,y)=x^3-6xy+3y^2+1
|
f(x,y)=x^{3}-6xy+3y^{2}+1
|
extreme f(x)=(x^2)/(x-6)
|
extreme\:f(x)=\frac{x^{2}}{x-6}
|
f(x,y)=4x^3-11xy^2+15y+12
|
f(x,y)=4x^{3}-11xy^{2}+15y+12
|
extreme f(x)=sin(x)+cos^2(x)
|
extreme\:f(x)=\sin(x)+\cos^{2}(x)
|
extreme f(x)=cos(5x)
|
extreme\:f(x)=\cos(5x)
|
extreme x/((x-1)^2)
|
extreme\:\frac{x}{(x-1)^{2}}
|
extreme f(x)=cos(4x)
|
extreme\:f(x)=\cos(4x)
|
f(x,y)=xy^2+2xy
|
f(x,y)=xy^{2}+2xy
|
extreme e^{-1.5x^2}
|
extreme\:e^{-1.5x^{2}}
|
domain (x+1)/(2x+1)
|
domain\:\frac{x+1}{2x+1}
|
extreme f(x)=x^3-3/2 x^2,-5<= x<= 6
|
extreme\:f(x)=x^{3}-\frac{3}{2}x^{2},-5\le\:x\le\:6
|
extreme f(x)=x^2+6x+8
|
extreme\:f(x)=x^{2}+6x+8
|
extreme f(x)=(2+x^2)/(x^2-1)
|
extreme\:f(x)=\frac{2+x^{2}}{x^{2}-1}
|
extreme f(x,y)=-x^2-y^2+8x+6y
|
extreme\:f(x,y)=-x^{2}-y^{2}+8x+6y
|
extreme f(x)=(x^2-7)/(x-4)
|
extreme\:f(x)=\frac{x^{2}-7}{x-4}
|
extreme 3x^4-4x^3+2
|
extreme\:3x^{4}-4x^{3}+2
|
extreme f(x,y)=x^3+y^3+3y^2-3x-9y+2
|
extreme\:f(x,y)=x^{3}+y^{3}+3y^{2}-3x-9y+2
|
f(x,y)=2x+4y-x^2y^4
|
f(x,y)=2x+4y-x^{2}y^{4}
|
extreme f(x)= 5/2 x-(x^2)/2
|
extreme\:f(x)=\frac{5}{2}x-\frac{x^{2}}{2}
|
f(x,y)=ln(4-x^2-y^2)
|
f(x,y)=\ln(4-x^{2}-y^{2})
|
critical points sqrt(x^3+8x)
|
critical\:points\:\sqrt{x^{3}+8x}
|
f(x,y)=6y^2+4x^2-12xy-4y
|
f(x,y)=6y^{2}+4x^{2}-12xy-4y
|
f(x,y)=x^2+xy+y^2-28y+261
|
f(x,y)=x^{2}+xy+y^{2}-28y+261
|
f(x)=Ix^2-4I
|
f(x)=Ix^{2}-4I
|
extreme f(x)=(x^3)/3-(x^2)/2-2x
|
extreme\:f(x)=\frac{x^{3}}{3}-\frac{x^{2}}{2}-2x
|
extreme f(x)=2^x
|
extreme\:f(x)=2^{x}
|
f(x,y)=-x^2+x-y^2-2y
|
f(x,y)=-x^{2}+x-y^{2}-2y
|
extreme f(x)=8xln(x)
|
extreme\:f(x)=8x\ln(x)
|
extreme f(x)=x+(25)/x
|
extreme\:f(x)=x+\frac{25}{x}
|
extreme f(x)=x^3-3x^2-9x+11
|
extreme\:f(x)=x^{3}-3x^{2}-9x+11
|
extreme f(x)=x^3-3x^2-9x+20
|
extreme\:f(x)=x^{3}-3x^{2}-9x+20
|
inverse f(x)=-sqrt((2-x^2)/3)
|
inverse\:f(x)=-\sqrt{\frac{2-x^{2}}{3}}
|
extreme f(x)= 2/3 x^3+3x^2-8x+1
|
extreme\:f(x)=\frac{2}{3}x^{3}+3x^{2}-8x+1
|
f(x,y)=x^3+y^3-3xy+4
|
f(x,y)=x^{3}+y^{3}-3xy+4
|
extreme y=xln(x)
|
extreme\:y=x\ln(x)
|
extreme f(x)=x^3-2x^2
|
extreme\:f(x)=x^{3}-2x^{2}
|
extreme f(x)=x^2(x-5)^2
|
extreme\:f(x)=x^{2}(x-5)^{2}
|
extreme f(x)=x^3+3x^2+3x+2
|
extreme\:f(x)=x^{3}+3x^{2}+3x+2
|
f(x,y)=xye^{xy}
|
f(x,y)=xye^{xy}
|
minimum x^4-2x^3
|
minimum\:x^{4}-2x^{3}
|
extreme f(x,y)=x+y
|
extreme\:f(x,y)=x+y
|
extreme f(x)=4x^3
|
extreme\:f(x)=4x^{3}
|
asymptotes f(x)=(x^2)/(sqrt(x^2-1))
|
asymptotes\:f(x)=\frac{x^{2}}{\sqrt{x^{2}-1}}
|
f(x)=x+yx^3
|
f(x)=x+yx^{3}
|
extreme f(x)=-x^4+8x^2-10
|
extreme\:f(x)=-x^{4}+8x^{2}-10
|
extreme f(x)=x^2-6x+2
|
extreme\:f(x)=x^{2}-6x+2
|
extreme f(x)=5+54x-2x^3,0<= x<= 4
|
extreme\:f(x)=5+54x-2x^{3},0\le\:x\le\:4
|
extreme f(x)=x^4+y^4-4xy+1
|
extreme\:f(x)=x^{4}+y^{4}-4xy+1
|
f(x)= 1/(x+y)
|
f(x)=\frac{1}{x+y}
|
extreme f(x)=3x^4-16x^3+18x^2
|
extreme\:f(x)=3x^{4}-16x^{3}+18x^{2}
|
extreme f(x)=-x^3-9x^2-24x+1
|
extreme\:f(x)=-x^{3}-9x^{2}-24x+1
|
extreme f(x)= x/(x^2-x+25),0<= x<= 15
|
extreme\:f(x)=\frac{x}{x^{2}-x+25},0\le\:x\le\:15
|
extreme f(x)=sin(x)+cos(x),(0,2π)
|
extreme\:f(x)=\sin(x)+\cos(x),(0,2π)
|
slope-x+3y+5=0
|
slope\:-x+3y+5=0
|
f(x,y)=x^2+2y^2-x
|
f(x,y)=x^{2}+2y^{2}-x
|
extreme f(x)=(2x-2)/(x^2+x)+1
|
extreme\:f(x)=\frac{2x-2}{x^{2}+x}+1
|
extreme f(x)=sqrt(4-x^2),-2<= x<= 1
|
extreme\:f(x)=\sqrt{4-x^{2}},-2\le\:x\le\:1
|
extreme (x-1)/(x^2)
|
extreme\:\frac{x-1}{x^{2}}
|
extreme xy
|
extreme\:xy
|
f(x)=2xy
|
f(x)=2xy
|
extreme f
|
extreme\:f
|
f(x,y)=-2x^3-2y^3+6xy+10
|
f(x,y)=-2x^{3}-2y^{3}+6xy+10
|
extreme f(x)=x^{1/3}+1
|
extreme\:f(x)=x^{\frac{1}{3}}+1
|
extreme f(x)=x-e^x
|
extreme\:f(x)=x-e^{x}
|
critical points 12x^2-64
|
critical\:points\:12x^{2}-64
|
extreme f(x)=12x-x^3
|
extreme\:f(x)=12x-x^{3}
|
f(x,y)=x^3+y^3-xy
|
f(x,y)=x^{3}+y^{3}-xy
|
f(x,y)=x^2-2x+y^2+2y+1
|
f(x,y)=x^{2}-2x+y^{2}+2y+1
|