T(x,y)=(x+3y,-x+5y)
|
T(x,y)=(x+3y,-x+5y)
|
extreme f(x)=x(12-2x)^2
|
extreme\:f(x)=x(12-2x)^{2}
|
extreme f(x,y)=8x^3+y^3+6xy
|
extreme\:f(x,y)=8x^{3}+y^{3}+6xy
|
f(x,y)=xy-x^3-y^2
|
f(x,y)=xy-x^{3}-y^{2}
|
extreme f(x)=x^3+6x^2+2
|
extreme\:f(x)=x^{3}+6x^{2}+2
|
extreme f(x)=0
|
extreme\:f(x)=0
|
extreme f(x)=1
|
extreme\:f(x)=1
|
g(x,y)=sqrt(xy)
|
g(x,y)=\sqrt{xy}
|
domain (8x)/(9x-1)
|
domain\:\frac{8x}{9x-1}
|
extreme f(x)=2x^3-21x^2+60x
|
extreme\:f(x)=2x^{3}-21x^{2}+60x
|
f(x,y)=x^3+y^3-3x-12y+20
|
f(x,y)=x^{3}+y^{3}-3x-12y+20
|
extreme f(x)=x^3-6x^2+5,-3<= x<= 5
|
extreme\:f(x)=x^{3}-6x^{2}+5,-3\le\:x\le\:5
|
extreme f(x)= 1/(x^2-1)
|
extreme\:f(x)=\frac{1}{x^{2}-1}
|
extreme 1/(x^2)
|
extreme\:\frac{1}{x^{2}}
|
f(x,y)=xye^{-x^2-y^2}
|
f(x,y)=xye^{-x^{2}-y^{2}}
|
extreme t^3-5t^2-2
|
extreme\:t^{3}-5t^{2}-2
|
G(b,a)=-b+a
|
G(b,a)=-b+a
|
extreme f(x)=3x^2-6x
|
extreme\:f(x)=3x^{2}-6x
|
extreme f(x)=2+12x-x^3
|
extreme\:f(x)=2+12x-x^{3}
|
asymptotes f(x)=tan(4x)
|
asymptotes\:f(x)=\tan(4x)
|
f(x,y)=e^{x^2+2y^2-5x-3y}
|
f(x,y)=e^{x^{2}+2y^{2}-5x-3y}
|
extreme f(x)=x^3-12x^2+45x+1
|
extreme\:f(x)=x^{3}-12x^{2}+45x+1
|
extreme 3|x|
|
extreme\:3\left|x\right|
|
extreme f(x)=x^2+2
|
extreme\:f(x)=x^{2}+2
|
f(x,y)=e^{x^2+y^2-4x}
|
f(x,y)=e^{x^{2}+y^{2}-4x}
|
f(x,y)=x^2-xy
|
f(x,y)=x^{2}-xy
|
extreme f(x)=sec(x)
|
extreme\:f(x)=\sec(x)
|
f(x,y)=yex+2xey-1
|
f(x,y)=yex+2xey-1
|
f(x,y)=7y-4(x+y)^2
|
f(x,y)=7y-4(x+y)^{2}
|
f(x,y)= 1/(x-y)
|
f(x,y)=\frac{1}{x-y}
|
critical points f(x)=(-1)/(x+2)
|
critical\:points\:f(x)=\frac{-1}{x+2}
|
extreme f(x)=4x^5-5x^4
|
extreme\:f(x)=4x^{5}-5x^{4}
|
f(x,y)=x^2+y^2-2x
|
f(x,y)=x^{2}+y^{2}-2x
|
extreme f(x)= 1/3 x^3-2x^2+3x-4,-2<= x<= 5
|
extreme\:f(x)=\frac{1}{3}x^{3}-2x^{2}+3x-4,-2\le\:x\le\:5
|
extreme e^{-3.5x^2}
|
extreme\:e^{-3.5x^{2}}
|
extreme (x^2)/(x^2-4)
|
extreme\:\frac{x^{2}}{x^{2}-4}
|
extreme f(x)=(x^2-3x-4)/(x-2)
|
extreme\:f(x)=\frac{x^{2}-3x-4}{x-2}
|
extreme y=x^2e^{-x}
|
extreme\:y=x^{2}e^{-x}
|
extreme x/(1+x^2)
|
extreme\:\frac{x}{1+x^{2}}
|
extreme f(x)=x^3-5x^2+3x+10
|
extreme\:f(x)=x^{3}-5x^{2}+3x+10
|
extreme f(x)=e^{-x}
|
extreme\:f(x)=e^{-x}
|
asymptotes f(x)=(x+3)/(x(x+4))
|
asymptotes\:f(x)=\frac{x+3}{x(x+4)}
|
extreme f(x)=9x^{2/3}+3x-6
|
extreme\:f(x)=9x^{\frac{2}{3}}+3x-6
|
f(x,y)=(x^2+y^2)
|
f(x,y)=(x^{2}+y^{2})
|
extreme f(x)=(x^2-2x+2)/(x-1)
|
extreme\:f(x)=\frac{x^{2}-2x+2}{x-1}
|
extreme f(x)=2x^3-9x^2+27
|
extreme\:f(x)=2x^{3}-9x^{2}+27
|
extreme f(x,y)=x^2-x^2y^2+y^2
|
extreme\:f(x,y)=x^{2}-x^{2}y^{2}+y^{2}
|
f(x,y)=x^2y+4xy-2y^2-3
|
f(x,y)=x^{2}y+4xy-2y^{2}-3
|
extreme f(x)=(1-x^2)/(1+x^2)
|
extreme\:f(x)=\frac{1-x^{2}}{1+x^{2}}
|
f(x,y)=3x^2+2y^2
|
f(x,y)=3x^{2}+2y^{2}
|
extreme f(x)=-3/5 x^5+9x^4-35x^3+6
|
extreme\:f(x)=-\frac{3}{5}x^{5}+9x^{4}-35x^{3}+6
|
f(x)=sqrt(x-y)
|
f(x)=\sqrt{x-y}
|
domain f(x)=(sqrt(2x+5))/(x-3)
|
domain\:f(x)=\frac{\sqrt{2x+5}}{x-3}
|
f(x,y)=x-y
|
f(x,y)=x-y
|
f(x,y)=y^4+x^2-8y^2+2x
|
f(x,y)=y^{4}+x^{2}-8y^{2}+2x
|
extreme f(x)=2x^3+3x^2+4
|
extreme\:f(x)=2x^{3}+3x^{2}+4
|
extreme f(x)=x^3+3y^3+3x^2+3y^2+24
|
extreme\:f(x)=x^{3}+3y^{3}+3x^{2}+3y^{2}+24
|
f(x,y)=x+4y+2/(xy)
|
f(x,y)=x+4y+\frac{2}{xy}
|
extreme xe^{-x^2}
|
extreme\:xe^{-x^{2}}
|
extreme f(x)=2x^3+12x^2-72x+11
|
extreme\:f(x)=2x^{3}+12x^{2}-72x+11
|
f(x,y)=x^4+6sqrt(y)-10
|
f(x,y)=x^{4}+6\sqrt{y}-10
|
f(x,y)=xln(y)
|
f(x,y)=x\ln(y)
|
extreme f(x)=2x^3-3x^2-12x+2
|
extreme\:f(x)=2x^{3}-3x^{2}-12x+2
|
inverse f(x)=\sqrt[5]{x^3+2}-1
|
inverse\:f(x)=\sqrt[5]{x^{3}+2}-1
|
extreme f(x)=2x^3-3x^2-12x+5
|
extreme\:f(x)=2x^{3}-3x^{2}-12x+5
|
5/9 v+w
|
\frac{5}{9}v+w
|
extreme f(x)=(x+1)e^{-x}
|
extreme\:f(x)=(x+1)e^{-x}
|
extreme f(x)=x^4-3x^3
|
extreme\:f(x)=x^{4}-3x^{3}
|
extreme f(x)=(x^3)/3-2x^2+3x
|
extreme\:f(x)=\frac{x^{3}}{3}-2x^{2}+3x
|
extreme f(x)=x+(64)/x
|
extreme\:f(x)=x+\frac{64}{x}
|
extreme f(x)=x^3-3/2 x^2,-1<= x<= 2
|
extreme\:f(x)=x^{3}-\frac{3}{2}x^{2},-1\le\:x\le\:2
|
extreme f(x)=2x^2
|
extreme\:f(x)=2x^{2}
|
extreme f(x)=x^2+x-2
|
extreme\:f(x)=x^{2}+x-2
|
f(x,y)=y^3+9y^2-8xy+5x^2-2
|
f(x,y)=y^{3}+9y^{2}-8xy+5x^{2}-2
|
intercepts f(x)=4x^4-20x^3-3x^2+14x+5
|
intercepts\:f(x)=4x^{4}-20x^{3}-3x^{2}+14x+5
|
extreme (e^{-x})/(x+1)
|
extreme\:\frac{e^{-x}}{x+1}
|
extreme (sqrt(x))/(1+x)
|
extreme\:\frac{\sqrt{x}}{1+x}
|
extreme f(x)=x^3-6x^2+4
|
extreme\:f(x)=x^{3}-6x^{2}+4
|
extreme f(x)=-x^2+2x+3
|
extreme\:f(x)=-x^{2}+2x+3
|
extreme f(x)=x^2-2x-8
|
extreme\:f(x)=x^{2}-2x-8
|
extreme f(x)=x^4-2x^2+1
|
extreme\:f(x)=x^{4}-2x^{2}+1
|
extreme f(x)=(-8)/(x^2-4)
|
extreme\:f(x)=\frac{-8}{x^{2}-4}
|
extreme f(x)=(x^2-x-2)/(x^2-6x+9)
|
extreme\:f(x)=\frac{x^{2}-x-2}{x^{2}-6x+9}
|
extreme f(x,y)=xy+8/x+8/y
|
extreme\:f(x,y)=xy+\frac{8}{x}+\frac{8}{y}
|
f(x,y)=xy-7xy+200x
|
f(x,y)=xy-7xy+200x
|
range y=cot(1/9 x)
|
range\:y=\cot(\frac{1}{9}x)
|
extreme f(x,y)=xy-5x-5y-x^2-y^2
|
extreme\:f(x,y)=xy-5x-5y-x^{2}-y^{2}
|
extreme f(x)=(x-1)/(x^2)
|
extreme\:f(x)=\frac{x-1}{x^{2}}
|
extreme sqrt(x+3)
|
extreme\:\sqrt{x+3}
|
f(x,y)=-5x^2+4xy-y^2+16x+10
|
f(x,y)=-5x^{2}+4xy-y^{2}+16x+10
|
f(x,y)=(sqrt(y))/x
|
f(x,y)=\frac{\sqrt{y}}{x}
|
f(x,y)=(x^2-5y^2)/(x+4)
|
f(x,y)=\frac{x^{2}-5y^{2}}{x+4}
|
extreme f(x)=x^3+7x^2-5x
|
extreme\:f(x)=x^{3}+7x^{2}-5x
|
extreme f(x)=x^4-4x^3+9x+1
|
extreme\:f(x)=x^{4}-4x^{3}+9x+1
|
P(a,b)=(ab^2)/(2a^2b)*(4a^5b^3)/(12a^4b^3)
|
P(a,b)=\frac{ab^{2}}{2a^{2}b}\cdot\:\frac{4a^{5}b^{3}}{12a^{4}b^{3}}
|
extreme x^3-12x
|
extreme\:x^{3}-12x
|
inflection points (x^2+x+1)/(x^2-x+1)
|
inflection\:points\:\frac{x^{2}+x+1}{x^{2}-x+1}
|
intercepts f(x)=(4x)/(x^2-16)
|
intercepts\:f(x)=\frac{4x}{x^{2}-16}
|
extreme f(x,y)=9x^3+(y^3)/3-4xy
|
extreme\:f(x,y)=9x^{3}+\frac{y^{3}}{3}-4xy
|
extreme f(x)=x+y
|
extreme\:f(x)=x+y
|