extreme points of f(x)=x^2+(480)/x
|
extreme\:points\:f(x)=x^{2}+\frac{480}{x}
|
inverse of f(x)=2-8x
|
inverse\:f(x)=2-8x
|
parity f(x)=3
|
parity\:f(x)=3
|
inverse of f(x)=(2x+2)/(x-1)
|
inverse\:f(x)=\frac{2x+2}{x-1}
|
intercepts of f(x)=(4x^2-81)/(2x-20)
|
intercepts\:f(x)=\frac{4x^{2}-81}{2x-20}
|
domain of 7
|
domain\:7
|
asymptotes of f(x)=(x(x-2)^2)/((x+3)^3)
|
asymptotes\:f(x)=\frac{x(x-2)^{2}}{(x+3)^{3}}
|
intercepts of f(x)=8x-y=8
|
intercepts\:f(x)=8x-y=8
|
parity arctan(sec(x))
|
parity\:\arctan(\sec(x))
|
domain of f(x)=11x+3
|
domain\:f(x)=11x+3
|
midpoint (-9,8),(-16,9)
|
midpoint\:(-9,8),(-16,9)
|
critical points of sin(x+3pi)
|
critical\:points\:\sin(x+3\pi)
|
inverse of f(x)=sqrt(4-x)+1
|
inverse\:f(x)=\sqrt{4-x}+1
|
domain of 9-x^2
|
domain\:9-x^{2}
|
monotone intervals f(x)=0
|
monotone\:intervals\:f(x)=0
|
inverse of e^{1/x}
|
inverse\:e^{\frac{1}{x}}
|
asymptotes of (2x+6)/(x^2-2x-3)
|
asymptotes\:\frac{2x+6}{x^{2}-2x-3}
|
line (2/3 ,-1/3)(2,1)
|
line\:(\frac{2}{3},-\frac{1}{3})(2,1)
|
intercepts of f(x)= 3/(x^2+5x-4)
|
intercepts\:f(x)=\frac{3}{x^{2}+5x-4}
|
monotone intervals f(x)= 5/3 x^{(2/3)}-1
|
monotone\:intervals\:f(x)=\frac{5}{3}x^{(\frac{2}{3})}-1
|
inverse of 4*3^x
|
inverse\:4\cdot\:3^{x}
|
extreme points of (x^2-8)/(x-3)
|
extreme\:points\:\frac{x^{2}-8}{x-3}
|
asymptotes of ln(x+3)
|
asymptotes\:\ln(x+3)
|
intercepts of f(x)=2x-y=6
|
intercepts\:f(x)=2x-y=6
|
range of f(x)=(x-2)/(x+3)
|
range\:f(x)=\frac{x-2}{x+3}
|
domain of f(x)=sqrt(t^2+4)
|
domain\:f(x)=\sqrt{t^{2}+4}
|
inverse of f(x)=(-4+\sqrt[3]{4x})/2
|
inverse\:f(x)=\frac{-4+\sqrt[3]{4x}}{2}
|
domain of f(x)=(x-1)/(x^2-2x-3)
|
domain\:f(x)=\frac{x-1}{x^{2}-2x-3}
|
asymptotes of f(x)=(x^2+3x-4)/(3x+3)
|
asymptotes\:f(x)=\frac{x^{2}+3x-4}{3x+3}
|
domain of f(x)=sqrt(1/(x^2)+1/(2x-1))
|
domain\:f(x)=\sqrt{\frac{1}{x^{2}}+\frac{1}{2x-1}}
|
domain of f(x)=(2y)/(9+y^2)
|
domain\:f(x)=\frac{2y}{9+y^{2}}
|
inverse of f(x)=sqrt(x+4)-8
|
inverse\:f(x)=\sqrt{x+4}-8
|
domain of f(x)=sqrt(t+7)
|
domain\:f(x)=\sqrt{t+7}
|
extreme points of f(x)=-x-6
|
extreme\:points\:f(x)=-x-6
|
intercepts of f(x)=(x+3)/(x-5)
|
intercepts\:f(x)=\frac{x+3}{x-5}
|
extreme points of y=2x^3-3x^2-9
|
extreme\:points\:y=2x^{3}-3x^{2}-9
|
extreme points of f(x)=4x^4-24x^2
|
extreme\:points\:f(x)=4x^{4}-24x^{2}
|
range of f(x)=-(x+3)^2+4
|
range\:f(x)=-(x+3)^{2}+4
|
inverse of 4
|
inverse\:4
|
x2
|
x2
|
distance (5,0)(2,-2)
|
distance\:(5,0)(2,-2)
|
domain of f(x)=sqrt(30-x^2+x)
|
domain\:f(x)=\sqrt{30-x^{2}+x}
|
range of f(x)= 3/(x+1)x>= 0
|
range\:f(x)=\frac{3}{x+1}x\ge\:0
|
domain of f(x)=sqrt(-5x+20)
|
domain\:f(x)=\sqrt{-5x+20}
|
intercepts of f(x)=6x-4y=12
|
intercepts\:f(x)=6x-4y=12
|
inverse of-(x-4)^2+1
|
inverse\:-(x-4)^{2}+1
|
domain of f(x)=sqrt(2-\sqrt{x)}
|
domain\:f(x)=\sqrt{2-\sqrt{x}}
|
extreme points of f(x)=x^2+2x-3
|
extreme\:points\:f(x)=x^{2}+2x-3
|
inverse of 2ln(x^2+1)
|
inverse\:2\ln(x^{2}+1)
|
domain of f(x)=(sqrt(2x-4))/(x^2-9)
|
domain\:f(x)=\frac{\sqrt{2x-4}}{x^{2}-9}
|
parity f(x)=csc(x)
|
parity\:f(x)=\csc(x)
|
inflection points of f(x)=3x^5-30x^4
|
inflection\:points\:f(x)=3x^{5}-30x^{4}
|
range of f(x)=6x-3
|
range\:f(x)=6x-3
|
distance (8,20)(2,2)
|
distance\:(8,20)(2,2)
|
inverse of f(x)=19cos(2x)+4
|
inverse\:f(x)=19\cos(2x)+4
|
inverse of f(x)=3x+12
|
inverse\:f(x)=3x+12
|
inverse of f(x)=1.5^x+4
|
inverse\:f(x)=1.5^{x}+4
|
extreme points of x^2-4x-12
|
extreme\:points\:x^{2}-4x-12
|
range of f(x)= 5/x+7
|
range\:f(x)=\frac{5}{x}+7
|
monotone intervals f(x)=(x^2)/(x-6)
|
monotone\:intervals\:f(x)=\frac{x^{2}}{x-6}
|
intercepts of x^2-6x+5
|
intercepts\:x^{2}-6x+5
|
domain of (1/((2x-3)^2))
|
domain\:(\frac{1}{(2x-3)^{2}})
|
slope intercept of x+2y=-4
|
slope\:intercept\:x+2y=-4
|
symmetry X^3
|
symmetry\:X^{3}
|
intercepts of-4
|
intercepts\:-4
|
domain of f(x)=2-10x
|
domain\:f(x)=2-10x
|
midpoint (-2,-1)(-5,8)
|
midpoint\:(-2,-1)(-5,8)
|
asymptotes of (x^3-1)/(x^2-6x+5)
|
asymptotes\:\frac{x^{3}-1}{x^{2}-6x+5}
|
range of sqrt(x+7)
|
range\:\sqrt{x+7}
|
range of f(x)=4(x+1)(x+2)^2
|
range\:f(x)=4(x+1)(x+2)^{2}
|
inverse of f(x)=9-4x
|
inverse\:f(x)=9-4x
|
domain of f(x)=sqrt(5)cos(1.2x)
|
domain\:f(x)=\sqrt{5}\cos(1.2x)
|
periodicity of y=5sin(2x-(pi)/3)+1
|
periodicity\:y=5\sin(2x-\frac{\pi}{3})+1
|
asymptotes of f(x)=(3x)/(x+2)
|
asymptotes\:f(x)=\frac{3x}{x+2}
|
asymptotes of f(x)=(x+3)/(x(x+1))
|
asymptotes\:f(x)=\frac{x+3}{x(x+1)}
|
asymptotes of f(x)=(x^3-x)/(x^2-6x+5)
|
asymptotes\:f(x)=\frac{x^{3}-x}{x^{2}-6x+5}
|
parity f(x)=x^5
|
parity\:f(x)=x^{5}
|
inverse of f(x)=(5x)/(6x+7)
|
inverse\:f(x)=\frac{5x}{6x+7}
|
domain of ln(x)
|
domain\:\ln(x)
|
asymptotes of f(x)=-4/(x+2)
|
asymptotes\:f(x)=-\frac{4}{x+2}
|
domain of f(x)=cos(pi x)
|
domain\:f(x)=\cos(\pi\:x)
|
asymptotes of (x^2-6x+9)/(x-3)
|
asymptotes\:\frac{x^{2}-6x+9}{x-3}
|
f(x)=|x-5|
|
f(x)=\left|x-5\right|
|
domain of 1/(sqrt(x-12))
|
domain\:\frac{1}{\sqrt{x-12}}
|
domain of y=ln(x)
|
domain\:y=\ln(x)
|
domain of-1/2 x^2-5x-15/2
|
domain\:-\frac{1}{2}x^{2}-5x-\frac{15}{2}
|
inverse of f(x)=\sqrt[3]{4-x}+2
|
inverse\:f(x)=\sqrt[3]{4-x}+2
|
inverse of f(x)=(-2x+2)/(x+7)
|
inverse\:f(x)=\frac{-2x+2}{x+7}
|
inverse of f(x)=sqrt(x^2-25),x>= 5
|
inverse\:f(x)=\sqrt{x^{2}-25},x\ge\:5
|
intercepts of (x^2)/(x^2-9)
|
intercepts\:\frac{x^{2}}{x^{2}-9}
|
range of (6x)/(5x-6)
|
range\:\frac{6x}{5x-6}
|
domain of y=cos(2x)
|
domain\:y=\cos(2x)
|
domain of (x+7)/(x^2-14x+49)
|
domain\:\frac{x+7}{x^{2}-14x+49}
|
domain of csc(0.1x+1.2)
|
domain\:\csc(0.1x+1.2)
|
line |3|,-|4|,-2,9
|
line\:|3|,-|4|,-2,9
|
intercepts of f(x)=x^5-3x^3
|
intercepts\:f(x)=x^{5}-3x^{3}
|
intercepts of f(x)=log_{4}(x+2)
|
intercepts\:f(x)=\log_{4}(x+2)
|
y=(|x|)/x
|
y=\frac{\left|x\right|}{x}
|
inflection points of f(x)=(x^2)/2+1/x
|
inflection\:points\:f(x)=\frac{x^{2}}{2}+\frac{1}{x}
|
inverse of f(x)=(x+8)^5
|
inverse\:f(x)=(x+8)^{5}
|