asymptotes of f(x)=(3x)/(x-2)
|
asymptotes\:f(x)=\frac{3x}{x-2}
|
slope of (,-3)(-1,15)
|
slope\:(,-3)(-1,15)
|
domain of f(x)=((-9-8x))/(x-1)
|
domain\:f(x)=\frac{(-9-8x)}{x-1}
|
range of sqrt(-x)+3
|
range\:\sqrt{-x}+3
|
monotone intervals f(x)=(x^2)/((x-2)^3)
|
monotone\:intervals\:f(x)=\frac{x^{2}}{(x-2)^{3}}
|
midpoint (2,1000)(2.5,850)
|
midpoint\:(2,1000)(2.5,850)
|
domain of f(x)=\sqrt[3]{x-5}
|
domain\:f(x)=\sqrt[3]{x-5}
|
midpoint (5,8)(13,10)
|
midpoint\:(5,8)(13,10)
|
slope of-3x-5y=8
|
slope\:-3x-5y=8
|
inverse of f(x)=10^{x-10}-10
|
inverse\:f(x)=10^{x-10}-10
|
perpendicular 3x-4y=12
|
perpendicular\:3x-4y=12
|
inflection points of y=x^3-15x^2+75x-1
|
inflection\:points\:y=x^{3}-15x^{2}+75x-1
|
periodicity of f(x)=3sin(2/3 x)
|
periodicity\:f(x)=3\sin(\frac{2}{3}x)
|
intercepts of f(x)=y=-2x-21
|
intercepts\:f(x)=y=-2x-21
|
intercepts of y=-2x
|
intercepts\:y=-2x
|
domain of f(x)=4+sqrt(x-3)
|
domain\:f(x)=4+\sqrt{x-3}
|
extreme points of f(x)=x^3-2x^2-4x+5
|
extreme\:points\:f(x)=x^{3}-2x^{2}-4x+5
|
extreme points of f(x)=(x^2-3)(x^{1/2})
|
extreme\:points\:f(x)=(x^{2}-3)(x^{\frac{1}{2}})
|
domain of H(x)=(x^2)/(x+3)
|
domain\:H(x)=\frac{x^{2}}{x+3}
|
periodicity of f(x)=sin(20pi t)
|
periodicity\:f(x)=\sin(20\pi\:t)
|
intercepts of f(x)=-x^2+9
|
intercepts\:f(x)=-x^{2}+9
|
inverse of f(x)=5x-25
|
inverse\:f(x)=5x-25
|
symmetry x^2-5x+4
|
symmetry\:x^{2}-5x+4
|
inverse of f(x)=-2/(x+1)+3
|
inverse\:f(x)=-\frac{2}{x+1}+3
|
domain of f(x)=sqrt(3-6x)
|
domain\:f(x)=\sqrt{3-6x}
|
perpendicular y=9x-6
|
perpendicular\:y=9x-6
|
critical points of \sqrt[3]{x}
|
critical\:points\:\sqrt[3]{x}
|
range of y=cos(x)+1
|
range\:y=\cos(x)+1
|
symmetry e^x
|
symmetry\:e^{x}
|
intercepts of f(x)=(120-6w)w^2
|
intercepts\:f(x)=(120-6w)w^{2}
|
asymptotes of f(x)=(6x)/(x^2-36)
|
asymptotes\:f(x)=\frac{6x}{x^{2}-36}
|
domain of f(x)= 1/(sqrt(9-x))
|
domain\:f(x)=\frac{1}{\sqrt{9-x}}
|
inverse of 2/3
|
inverse\:\frac{2}{3}
|
range of f(x)=3-2^x
|
range\:f(x)=3-2^{x}
|
domain of f(x)=y=\sqrt[5]{x+2}-3
|
domain\:f(x)=y=\sqrt[5]{x+2}-3
|
domain of 1/(x+1)-sqrt(-(x^2-1)^2)
|
domain\:\frac{1}{x+1}-\sqrt{-(x^{2}-1)^{2}}
|
domain of 9/(9/x)
|
domain\:\frac{9}{\frac{9}{x}}
|
range of sqrt(x)+17
|
range\:\sqrt{x}+17
|
slope of =2
|
slope\:=2
|
asymptotes of f(x)=x-sin(x)
|
asymptotes\:f(x)=x-\sin(x)
|
midpoint (3,2.5)(-3,6)
|
midpoint\:(3,2.5)(-3,6)
|
domain of f(x)=ln(x^2+1)
|
domain\:f(x)=\ln(x^{2}+1)
|
asymptotes of f(x)= 1/(x-5)+4
|
asymptotes\:f(x)=\frac{1}{x-5}+4
|
domain of sqrt(x+10)
|
domain\:\sqrt{x+10}
|
range of sqrt(-x+3)
|
range\:\sqrt{-x+3}
|
intercepts of f(x)=(6x)/(x-3)
|
intercepts\:f(x)=\frac{6x}{x-3}
|
midpoint (2,-1)(4,5)
|
midpoint\:(2,-1)(4,5)
|
extreme points of f(x)=((x-1)^2)/(x^2+2)
|
extreme\:points\:f(x)=\frac{(x-1)^{2}}{x^{2}+2}
|
line (0,2017.92),(350,8142.92)
|
line\:(0,2017.92),(350,8142.92)
|
extreme points of e^x-e^{2x}
|
extreme\:points\:e^{x}-e^{2x}
|
periodicity of f(x)=cos((pi)/8 n^2)
|
periodicity\:f(x)=\cos(\frac{\pi}{8}n^{2})
|
inverse of f(x)=(3x+1)/6
|
inverse\:f(x)=\frac{3x+1}{6}
|
slope intercept of y=4
|
slope\:intercept\:y=4
|
extreme points of (1/(1+e^{-x)})
|
extreme\:points\:(\frac{1}{1+e^{-x}})
|
domain of f(x)=5(5x-3)-3
|
domain\:f(x)=5(5x-3)-3
|
slope of f(x)= 3/4 x-2
|
slope\:f(x)=\frac{3}{4}x-2
|
symmetry-4x^2+24x-35
|
symmetry\:-4x^{2}+24x-35
|
domain of-3x+2
|
domain\:-3x+2
|
range of x+2
|
range\:x+2
|
y=e^{2x}
|
y=e^{2x}
|
perpendicular 2x+5y=-30
|
perpendicular\:2x+5y=-30
|
inverse of f(x)=4x^2,x<= 0
|
inverse\:f(x)=4x^{2},x\le\:0
|
critical points of (3-x)e^{-x}
|
critical\:points\:(3-x)e^{-x}
|
inverse of f(3)=(x+1)/(3-7x)
|
inverse\:f(3)=\frac{x+1}{3-7x}
|
intercepts of f(x)=-x^3+12x-16
|
intercepts\:f(x)=-x^{3}+12x-16
|
inverse of f(x)=x^2,[0,infinity ]
|
inverse\:f(x)=x^{2},[0,\infty\:]
|
inverse of f(x)=1-4x^3
|
inverse\:f(x)=1-4x^{3}
|
slope intercept of 2x+9y=18
|
slope\:intercept\:2x+9y=18
|
shift 20cos(pi x-(pi)/2)
|
shift\:20\cos(\pi\:x-\frac{\pi}{2})
|
inverse of f(x)=(75x)/(85-x)
|
inverse\:f(x)=\frac{75x}{85-x}
|
parity f(x)=|x+2|
|
parity\:f(x)=|x+2|
|
domain of (4x-21)/(-7x+67)
|
domain\:\frac{4x-21}{-7x+67}
|
intercepts of 3/(x+2)
|
intercepts\:\frac{3}{x+2}
|
inverse of f(x)=(x^3-5)^{1/3}-3
|
inverse\:f(x)=(x^{3}-5)^{\frac{1}{3}}-3
|
inflection points of (x-4)/(3x-x^2)
|
inflection\:points\:\frac{x-4}{3x-x^{2}}
|
domain of-x^4+11x^2-18
|
domain\:-x^{4}+11x^{2}-18
|
intercepts of f(x)=sin(x)
|
intercepts\:f(x)=\sin(x)
|
range of (x+9)/2
|
range\:\frac{x+9}{2}
|
y=x^3-1
|
y=x^{3}-1
|
parity f(x)=7x^3-4x-2
|
parity\:f(x)=7x^{3}-4x-2
|
domain of f(x)= 1/(sqrt(t))
|
domain\:f(x)=\frac{1}{\sqrt{t}}
|
domain of f(x)=(x-2)/(x^3+2x)
|
domain\:f(x)=\frac{x-2}{x^{3}+2x}
|
asymptotes of sin(1/x)
|
asymptotes\:\sin(\frac{1}{x})
|
intercepts of sqrt(64-x^3)
|
intercepts\:\sqrt{64-x^{3}}
|
slope of-3X+Y-157=0
|
slope\:-3X+Y-157=0
|
intercepts of f(x)=x^3-2x^2-35x
|
intercepts\:f(x)=x^{3}-2x^{2}-35x
|
inverse of f(x)= x/(3x-1)
|
inverse\:f(x)=\frac{x}{3x-1}
|
domain of f(x)=x^3-3x
|
domain\:f(x)=x^{3}-3x
|
domain of f(x)= 6/(2x)+8
|
domain\:f(x)=\frac{6}{2x}+8
|
range of f(x)=sqrt(-x)-3
|
range\:f(x)=\sqrt{-x}-3
|
shift sin(2.3x+0.8)+0.4
|
shift\:\sin(2.3x+0.8)+0.4
|
global extreme points of e^{-y}+e^2
|
global\:extreme\:points\:e^{-y}+e^{2}
|
intercepts of f(x)=-3/2 x+2
|
intercepts\:f(x)=-\frac{3}{2}x+2
|
domain of f(x)=sqrt(5x-6)
|
domain\:f(x)=\sqrt{5x-6}
|
slope of y=-3/7 x-1/7
|
slope\:y=-\frac{3}{7}x-\frac{1}{7}
|
domain of f(x)=(x-8)/(x^2+16x+64)
|
domain\:f(x)=\frac{x-8}{x^{2}+16x+64}
|
asymptotes of f(x)= 2/(x-1)
|
asymptotes\:f(x)=\frac{2}{x-1}
|
asymptotes of f(x)= 1/x+1/4 x
|
asymptotes\:f(x)=\frac{1}{x}+\frac{1}{4}x
|
domain of f(x)=2x^2-3x+1
|
domain\:f(x)=2x^{2}-3x+1
|
intercepts of f(x)=(x^2+3x+2)/(2x^2+14x)
|
intercepts\:f(x)=\frac{x^{2}+3x+2}{2x^{2}+14x}
|