inverse of f(x)=(x-5)/(3x+4)
|
inverse\:f(x)=\frac{x-5}{3x+4}
|
domain of f(x)=x^3=7x^2-3
|
domain\:f(x)=x^{3}=7x^{2}-3
|
inverse of f(x)=(ln(x+3))/2
|
inverse\:f(x)=\frac{\ln(x+3)}{2}
|
perpendicular-3x+4y=10
|
perpendicular\:-3x+4y=10
|
extreme points of f(x)=(x+4)^4
|
extreme\:points\:f(x)=(x+4)^{4}
|
inverse of sqrt(-2x+3)
|
inverse\:\sqrt{-2x+3}
|
inverse of f(x)=(3x+1)/(8+5x)
|
inverse\:f(x)=\frac{3x+1}{8+5x}
|
asymptotes of f(x)=(6x)/(x-3)
|
asymptotes\:f(x)=\frac{6x}{x-3}
|
inverse of f(x)=-5x+2
|
inverse\:f(x)=-5x+2
|
inverse of 1/(x^4)
|
inverse\:\frac{1}{x^{4}}
|
inverse of f(x)=0.5x+4
|
inverse\:f(x)=0.5x+4
|
domain of f(x)=sqrt(5x+6)
|
domain\:f(x)=\sqrt{5x+6}
|
inflection points of ln(7-6x^2)
|
inflection\:points\:\ln(7-6x^{2})
|
asymptotes of f(x)=(x^2-9)/(x-5)
|
asymptotes\:f(x)=\frac{x^{2}-9}{x-5}
|
asymptotes of f(x)= x/(x(x+4))
|
asymptotes\:f(x)=\frac{x}{x(x+4)}
|
extreme points of x^3-27x+50
|
extreme\:points\:x^{3}-27x+50
|
inverse of f(x)=9x-8
|
inverse\:f(x)=9x-8
|
inverse of f(x)= 2/3 x+6
|
inverse\:f(x)=\frac{2}{3}x+6
|
domain of y=(x-4)(sqrt(x+5))
|
domain\:y=(x-4)(\sqrt{x+5})
|
intercepts of ((x-5)(x+1))/((x+1)(x-2)x)
|
intercepts\:\frac{(x-5)(x+1)}{(x+1)(x-2)x}
|
asymptotes of f(x)=(x^3+2)/(sqrt(x^4+1))
|
asymptotes\:f(x)=\frac{x^{3}+2}{\sqrt{x^{4}+1}}
|
parity f(x)= x/((x+3)(x-3))
|
parity\:f(x)=\frac{x}{(x+3)(x-3)}
|
domain of f(x)= 1/(x+7)
|
domain\:f(x)=\frac{1}{x+7}
|
intercepts of f(x)=x(x-4)
|
intercepts\:f(x)=x(x-4)
|
inflection points of x^4-4x^3+2
|
inflection\:points\:x^{4}-4x^{3}+2
|
inverse of f(x)=(5x)/(9-5x)
|
inverse\:f(x)=\frac{5x}{9-5x}
|
asymptotes of f(x)= 9/(x^2)
|
asymptotes\:f(x)=\frac{9}{x^{2}}
|
inflection points of f(x)=-x^4-7x^3+2x-6
|
inflection\:points\:f(x)=-x^{4}-7x^{3}+2x-6
|
inverse of y=3x=
|
inverse\:y=3x=
|
midpoint (2,8)(6,4)
|
midpoint\:(2,8)(6,4)
|
domain of y=sqrt(9-X^2)
|
domain\:y=\sqrt{9-X^{2}}
|
inverse of f(x)=((2x-7))/(3x+5)
|
inverse\:f(x)=\frac{(2x-7)}{3x+5}
|
domain of f(x)= x/(x^2-16)
|
domain\:f(x)=\frac{x}{x^{2}-16}
|
extreme points of f(x)=(x^2)/(x+1)
|
extreme\:points\:f(x)=\frac{x^{2}}{x+1}
|
parity f(x)=2x^4-3x^2+1
|
parity\:f(x)=2x^{4}-3x^{2}+1
|
inverse of f(x)=(2x+1)^2
|
inverse\:f(x)=(2x+1)^{2}
|
extreme points of x^3+3x+8
|
extreme\:points\:x^{3}+3x+8
|
inverse of f(x)= 1/(x+11)
|
inverse\:f(x)=\frac{1}{x+11}
|
asymptotes of sec(x)
|
asymptotes\:\sec(x)
|
extreme points of f(x)=x^3-7x+5,[0,3]
|
extreme\:points\:f(x)=x^{3}-7x+5,[0,3]
|
slope of y=-1.75(0)+19
|
slope\:y=-1.75(0)+19
|
domain of f(x)=(12-x-x^2)/(|x-3|)
|
domain\:f(x)=\frac{12-x-x^{2}}{|x-3|}
|
extreme points of f(x)=sqrt(x^3+8x)
|
extreme\:points\:f(x)=\sqrt{x^{3}+8x}
|
y=x^2-3x+2
|
y=x^{2}-3x+2
|
parallel y= 1/6 x-4
|
parallel\:y=\frac{1}{6}x-4
|
midpoint (-5,-4)(5,3)
|
midpoint\:(-5,-4)(5,3)
|
f(x)=2x
|
f(x)=2x
|
asymptotes of f(x)=x+(sin(xpi))/(x+1)
|
asymptotes\:f(x)=x+\frac{\sin(x\pi)}{x+1}
|
intercepts of f(x)=(-5x-15)/(2x^2+5x-3)
|
intercepts\:f(x)=\frac{-5x-15}{2x^{2}+5x-3}
|
domain of f(x)=-1/(2sqrt(6-x))
|
domain\:f(x)=-\frac{1}{2\sqrt{6-x}}
|
inverse of 6-x^2
|
inverse\:6-x^{2}
|
inverse of f(x)=3+1/x
|
inverse\:f(x)=3+\frac{1}{x}
|
amplitude of f(x)=2sin((pi)/3 x)
|
amplitude\:f(x)=2\sin(\frac{\pi}{3}x)
|
asymptotes of f(x)=(2x-1)/(x^2-x-2)
|
asymptotes\:f(x)=\frac{2x-1}{x^{2}-x-2}
|
inverse of f(x)=(3-2x)/(3-4x)
|
inverse\:f(x)=\frac{3-2x}{3-4x}
|
midpoint (5,-4)(3,2)
|
midpoint\:(5,-4)(3,2)
|
slope of y=3x-6
|
slope\:y=3x-6
|
asymptotes of y=(-10x-7)/(-4x-2)
|
asymptotes\:y=\frac{-10x-7}{-4x-2}
|
asymptotes of f(x)= 5/(x-2)
|
asymptotes\:f(x)=\frac{5}{x-2}
|
domain of y=log_{2x+3}(x^2+3x-4)
|
domain\:y=\log_{2x+3}(x^{2}+3x-4)
|
domain of (sqrt(2x))/(x+1)
|
domain\:\frac{\sqrt{2x}}{x+1}
|
midpoint (10,-3)(2,-4)
|
midpoint\:(10,-3)(2,-4)
|
intercepts of f(x)= 3/(2-x)+4
|
intercepts\:f(x)=\frac{3}{2-x}+4
|
inverse of 4+2*e^{-x}
|
inverse\:4+2\cdot\:e^{-x}
|
distance ,(1/3 ,-5/4)\land (3/4 ,-4)
|
distance\:,(\frac{1}{3},-\frac{5}{4})\land\:(\frac{3}{4},-4)
|
domain of f(x)=x^3-2
|
domain\:f(x)=x^{3}-2
|
asymptotes of f(x)=(3x-1)/(2x+5)
|
asymptotes\:f(x)=\frac{3x-1}{2x+5}
|
midpoint (-11,4),(-2,-5)
|
midpoint\:(-11,4),(-2,-5)
|
inverse of f(x)=(x/4)+1/2
|
inverse\:f(x)=(\frac{x}{4})+\frac{1}{2}
|
range of g(x)=-x^2+4
|
range\:g(x)=-x^{2}+4
|
inverse of (-x+7)/(5+2x)
|
inverse\:\frac{-x+7}{5+2x}
|
critical points of x^{2/3}(x-5)
|
critical\:points\:x^{\frac{2}{3}}(x-5)
|
midpoint (4,6)(-3,3)
|
midpoint\:(4,6)(-3,3)
|
domain of 1/((x-5)^2)
|
domain\:\frac{1}{(x-5)^{2}}
|
intercepts of x^2+8x+14
|
intercepts\:x^{2}+8x+14
|
extreme points of 1/(X^2)
|
extreme\:points\:\frac{1}{X^{2}}
|
inverse of f(x)=sqrt(x+4)-2
|
inverse\:f(x)=\sqrt{x+4}-2
|
inverse of 5x+15
|
inverse\:5x+15
|
domain of f(x)= 1/(sqrt(x)-5)
|
domain\:f(x)=\frac{1}{\sqrt{x}-5}
|
critical points of f(x)=5sin(x)+5cos(x)
|
critical\:points\:f(x)=5\sin(x)+5\cos(x)
|
domain of x-7
|
domain\:x-7
|
inverse of ln(7)
|
inverse\:\ln(7)
|
slope of D(r)= 23/20 r+4/3
|
slope\:D(r)=\frac{23}{20}r+\frac{4}{3}
|
domain of f(x)=(4x-1)/(5x-3)
|
domain\:f(x)=\frac{4x-1}{5x-3}
|
range of f(x)=x^5-3x^3+5x
|
range\:f(x)=x^{5}-3x^{3}+5x
|
inflection points of f(x)=x^4-x^2+2
|
inflection\:points\:f(x)=x^{4}-x^{2}+2
|
inverse of \times cos(x)
|
inverse\:\times\:\cos(x)
|
range of f(x)=sqrt(4x)
|
range\:f(x)=\sqrt{4x}
|
asymptotes of f(x)=(x^2+15x+54)/(x+6)
|
asymptotes\:f(x)=\frac{x^{2}+15x+54}{x+6}
|
domain of f(x)=-sqrt(x+6)
|
domain\:f(x)=-\sqrt{x+6}
|
domain of y=(5x+20)/(x^2-16)
|
domain\:y=\frac{5x+20}{x^{2}-16}
|
inverse of f(x)=(-1/2 x^2+5.5)
|
inverse\:f(x)=(-\frac{1}{2}x^{2}+5.5)
|
monotone intervals (e^{2x})/(1-x)
|
monotone\:intervals\:\frac{e^{2x}}{1-x}
|
domain of f(x)=(x-2)/x
|
domain\:f(x)=\frac{x-2}{x}
|
y=|x|
|
y=\left|x\right|
|
inverse of ((-1))
|
inverse\:((-1))
|
inflection points of ((x-1)^3)/(x^2)
|
inflection\:points\:\frac{(x-1)^{3}}{x^{2}}
|
f(x)=x^2-6x
|
f(x)=x^{2}-6x
|
domain of f(x)=(x^2)/(3-sqrt(2x-1))
|
domain\:f(x)=\frac{x^{2}}{3-\sqrt{2x-1}}
|
intercepts of f(x)=3x^2+6x+1
|
intercepts\:f(x)=3x^{2}+6x+1
|