inverse of f(x)=((-3x+1))/x
|
inverse\:f(x)=\frac{(-3x+1)}{x}
|
inverse of f(x)=9x
|
inverse\:f(x)=9x
|
inverse of f(x)= 2/x
|
inverse\:f(x)=\frac{2}{x}
|
domain of y=-sqrt(x)
|
domain\:y=-\sqrt{x}
|
inverse of f(x)=e^{-x}
|
inverse\:f(x)=e^{-x}
|
asymptotes of (2x)/(x^2+1)
|
asymptotes\:\frac{2x}{x^{2}+1}
|
domain of f(x)=(sqrt(6+x))/(1-x)
|
domain\:f(x)=\frac{\sqrt{6+x}}{1-x}
|
intercepts of y=3x-sqrt(x^2+4)
|
intercepts\:y=3x-\sqrt{x^{2}+4}
|
critical points of f(x)=-x^3-3x^2
|
critical\:points\:f(x)=-x^{3}-3x^{2}
|
extreme points of f(x)=((e^x-e^{-x}))/9
|
extreme\:points\:f(x)=\frac{(e^{x}-e^{-x})}{9}
|
inverse of f(x)=2x^3+6
|
inverse\:f(x)=2x^{3}+6
|
inverse of f(x)=2x^3-3
|
inverse\:f(x)=2x^{3}-3
|
extreme points of f(x)=x^3-3x^2-x+3
|
extreme\:points\:f(x)=x^{3}-3x^{2}-x+3
|
extreme points of f(x)=x^5+x^3
|
extreme\:points\:f(x)=x^{5}+x^{3}
|
range of (3x)/(7x-6)
|
range\:\frac{3x}{7x-6}
|
domain of 2x^2-3
|
domain\:2x^{2}-3
|
domain of f(x)=-2x(x-1)(x-2)
|
domain\:f(x)=-2x(x-1)(x-2)
|
domain of (1-2t)/(6+t)
|
domain\:\frac{1-2t}{6+t}
|
extreme points of f(x)=(6,21)(12,105)
|
extreme\:points\:f(x)=(6,21)(12,105)
|
domain of f(x)=(9x(x-4))/(6x^2-41x-7)
|
domain\:f(x)=\frac{9x(x-4)}{6x^{2}-41x-7}
|
extreme points of y=(x^3+2)/x
|
extreme\:points\:y=\frac{x^{3}+2}{x}
|
domain of f(x)=((x+1))/(x^2+5x+6)
|
domain\:f(x)=\frac{(x+1)}{x^{2}+5x+6}
|
asymptotes of f(x)=8^x
|
asymptotes\:f(x)=8^{x}
|
shift 4sin(1/5 pi x-pi)+3
|
shift\:4\sin(\frac{1}{5}\pi\:x-\pi)+3
|
inverse of f(x)=\sqrt[3]{x}-1
|
inverse\:f(x)=\sqrt[3]{x}-1
|
midpoint (0,0)(2b,0)
|
midpoint\:(0,0)(2b,0)
|
range of-7/(2x^{3/2)}
|
range\:-\frac{7}{2x^{\frac{3}{2}}}
|
domain of f(x)=15x+12
|
domain\:f(x)=15x+12
|
extreme points of f(x)=(2-3x)/(e^x)
|
extreme\:points\:f(x)=\frac{2-3x}{e^{x}}
|
domain of f(x)=-4x+7
|
domain\:f(x)=-4x+7
|
f(x)=e^x+2e^{2x}
|
f(x)=e^{x}+2e^{2x}
|
range of f(x)=log_{5}(x+16)
|
range\:f(x)=\log_{5}(x+16)
|
domain of \sqrt[3]{x}+1
|
domain\:\sqrt[3]{x}+1
|
inverse of f(x)=sqrt(3)e^x-sqrt(3)
|
inverse\:f(x)=\sqrt{3}e^{x}-\sqrt{3}
|
inflection points of-7/(1+x^2)
|
inflection\:points\:-\frac{7}{1+x^{2}}
|
inverse of f(x)=-2/5 x+3
|
inverse\:f(x)=-\frac{2}{5}x+3
|
intercepts of f(x)=y=-29+5(7-x)
|
intercepts\:f(x)=y=-29+5(7-x)
|
intercepts of (x-4)/(x+4)
|
intercepts\:\frac{x-4}{x+4}
|
distance (5,1)(1,1)
|
distance\:(5,1)(1,1)
|
extreme points of f(x)=x^3-x^2-8x
|
extreme\:points\:f(x)=x^{3}-x^{2}-8x
|
domain of f(x)=7^{x-2}
|
domain\:f(x)=7^{x-2}
|
slope intercept of x/5+y/2 =1
|
slope\:intercept\:\frac{x}{5}+\frac{y}{2}=1
|
critical points of f(x)=x^2+2x+25
|
critical\:points\:f(x)=x^{2}+2x+25
|
symmetry y=x^2-9
|
symmetry\:y=x^{2}-9
|
inverse of f(x)=(x^2-3)/2
|
inverse\:f(x)=\frac{x^{2}-3}{2}
|
range of 2*arctan(x)
|
range\:2\cdot\:\arctan(x)
|
inverse of f(x)=4(x+1)^2-3
|
inverse\:f(x)=4(x+1)^{2}-3
|
intercepts of x^2+12x+36
|
intercepts\:x^{2}+12x+36
|
inverse of y=2x^2-8
|
inverse\:y=2x^{2}-8
|
line (0,-7)(-10,-11)
|
line\:(0,-7)(-10,-11)
|
critical points of (x^3-9x)/(10)
|
critical\:points\:\frac{x^{3}-9x}{10}
|
inverse of f(x)=ln((x-3)/(x+2))
|
inverse\:f(x)=\ln(\frac{x-3}{x+2})
|
distance (0,0)(-3,5)
|
distance\:(0,0)(-3,5)
|
inverse of f(x)=3(3x+4)
|
inverse\:f(x)=3(3x+4)
|
symmetry y=x^2-6x
|
symmetry\:y=x^{2}-6x
|
domain of f(x)=3x^2-12
|
domain\:f(x)=3x^{2}-12
|
periodicity of sin^4(x)
|
periodicity\:\sin^{4}(x)
|
inverse of f(x)=(8+x)/(3x-2)
|
inverse\:f(x)=\frac{8+x}{3x-2}
|
critical points of f(x)= 1/3 x^3-x^2-8x
|
critical\:points\:f(x)=\frac{1}{3}x^{3}-x^{2}-8x
|
inverse of f(x)= 9/5+32
|
inverse\:f(x)=\frac{9}{5}+32
|
inverse of f(x)=(-3)/3 x+2
|
inverse\:f(x)=\frac{-3}{3}x+2
|
domain of f(x)= 1/(x^2+6x-7)
|
domain\:f(x)=\frac{1}{x^{2}+6x-7}
|
extreme points of f(x)=x^4-4x^3+3x+5
|
extreme\:points\:f(x)=x^{4}-4x^{3}+3x+5
|
domain of f(x)=(8x-3)/x
|
domain\:f(x)=\frac{8x-3}{x}
|
symmetry y-6=(x+2)^2
|
symmetry\:y-6=(x+2)^{2}
|
distance (0,0)(3,2)
|
distance\:(0,0)(3,2)
|
line (8,0)(0,-3)
|
line\:(8,0)(0,-3)
|
range of f(x)=(x-1)^3+2
|
range\:f(x)=(x-1)^{3}+2
|
domain of f(x)=x^2(x+3)^2
|
domain\:f(x)=x^{2}(x+3)^{2}
|
monotone intervals f(x)= 1/(6x^2+1)
|
monotone\:intervals\:f(x)=\frac{1}{6x^{2}+1}
|
asymptotes of (x-3)/(x-6)
|
asymptotes\:\frac{x-3}{x-6}
|
critical points of f(x)=4x^3+7x^2-20x+9
|
critical\:points\:f(x)=4x^{3}+7x^{2}-20x+9
|
asymptotes of f(x)=(2x^3+3)/(x^3+2)
|
asymptotes\:f(x)=\frac{2x^{3}+3}{x^{3}+2}
|
inflection points of f(x)=3x^5-20x^3
|
inflection\:points\:f(x)=3x^{5}-20x^{3}
|
domain of f(x)=4x+3
|
domain\:f(x)=4x+3
|
domain of f(x)=ln(1)
|
domain\:f(x)=\ln(1)
|
domain of f(x)=-3x+9
|
domain\:f(x)=-3x+9
|
domain of x/(x+2)
|
domain\:\frac{x}{x+2}
|
asymptotes of (x^2+3x-10)/(x^2-4)
|
asymptotes\:\frac{x^{2}+3x-10}{x^{2}-4}
|
inverse of f(x)=\sqrt[3]{x+7}
|
inverse\:f(x)=\sqrt[3]{x+7}
|
range of 9/(x-1)
|
range\:\frac{9}{x-1}
|
monotone intervals f(x)=x^4-22x^2
|
monotone\:intervals\:f(x)=x^{4}-22x^{2}
|
inverse of f(x)=(5\sqrt[5]{x}-4)/6
|
inverse\:f(x)=\frac{5\sqrt[5]{x}-4}{6}
|
intercepts of (-x)/(e^x)
|
intercepts\:\frac{-x}{e^{x}}
|
extreme points of f(x)=4x^3-48x-2
|
extreme\:points\:f(x)=4x^{3}-48x-2
|
slope of 11x+8y+100=0
|
slope\:11x+8y+100=0
|
inverse of-(n+1)^3
|
inverse\:-(n+1)^{3}
|
domain of f(x)=2+tan(x)
|
domain\:f(x)=2+\tan(x)
|
domain of f(x)= x/(x^2+13x+40)
|
domain\:f(x)=\frac{x}{x^{2}+13x+40}
|
range of 1/(x^2-4)
|
range\:\frac{1}{x^{2}-4}
|
domain of f(x)=(x-8)^{1/2}
|
domain\:f(x)=(x-8)^{\frac{1}{2}}
|
inverse of (6x-5)/(x+9)
|
inverse\:\frac{6x-5}{x+9}
|
distance (-5,5)(2,2)
|
distance\:(-5,5)(2,2)
|
inverse of ln(ln(ln(4x)))
|
inverse\:\ln(\ln(\ln(4x)))
|
inverse of f(x)=(x+1)^2+3
|
inverse\:f(x)=(x+1)^{2}+3
|
domain of y= x/(x^2-4)
|
domain\:y=\frac{x}{x^{2}-4}
|
domain of f(x)=y^2+2x-x^2y^2=0
|
domain\:f(x)=y^{2}+2x-x^{2}y^{2}=0
|
asymptotes of f(x)= x/(x^2-9)
|
asymptotes\:f(x)=\frac{x}{x^{2}-9}
|
inverse of f(x)=5x-2
|
inverse\:f(x)=5x-2
|
extreme points of f(x)=(54)/(x^4)
|
extreme\:points\:f(x)=\frac{54}{x^{4}}
|