inverse of f(x)=\sqrt[5]{x}-2
|
inverse\:f(x)=\sqrt[5]{x}-2
|
asymptotes of 1/3 log_{10}(3x)
|
asymptotes\:\frac{1}{3}\log_{10}(3x)
|
domain of 2arcsin(1/2 x)
|
domain\:2\arcsin(\frac{1}{2}x)
|
inflection points of f(x)=(e^x-e^{-x})/6
|
inflection\:points\:f(x)=\frac{e^{x}-e^{-x}}{6}
|
domain of (x+7)/(8x+7)
|
domain\:\frac{x+7}{8x+7}
|
inverse of f(x)=-x^2+5
|
inverse\:f(x)=-x^{2}+5
|
extreme points of 2x^3+15x^2+13
|
extreme\:points\:2x^{3}+15x^{2}+13
|
intercepts of f(x)=11x^2+25y=275
|
intercepts\:f(x)=11x^{2}+25y=275
|
range of f(x)=3x^2+5,0<= x<= 9
|
range\:f(x)=3x^{2}+5,0\le\:x\le\:9
|
critical points of 11-3e^{-x}
|
critical\:points\:11-3e^{-x}
|
inverse of f(x)=(x-3)/5
|
inverse\:f(x)=\frac{x-3}{5}
|
domain of f(x)=(15x^2)/(x+5)
|
domain\:f(x)=\frac{15x^{2}}{x+5}
|
asymptotes of f(x)=(x-2)/(x^2-4)
|
asymptotes\:f(x)=\frac{x-2}{x^{2}-4}
|
extreme points of f(x)=3x^2-2x+1
|
extreme\:points\:f(x)=3x^{2}-2x+1
|
distance (-2,1)(1,3)
|
distance\:(-2,1)(1,3)
|
domain of (3x-6)/7
|
domain\:\frac{3x-6}{7}
|
inverse of f(x)=sqrt(x+4)+5
|
inverse\:f(x)=\sqrt{x+4}+5
|
critical points of g(x)=x^6-9x^4
|
critical\:points\:g(x)=x^{6}-9x^{4}
|
domain of f(x)=sqrt(\sqrt{x^2-1)-1}
|
domain\:f(x)=\sqrt{\sqrt{x^{2}-1}-1}
|
asymptotes of f(x)=(2x^2)/(x^2+1)
|
asymptotes\:f(x)=\frac{2x^{2}}{x^{2}+1}
|
inverse of f(x)=(x^2-4)/(8x^2)
|
inverse\:f(x)=\frac{x^{2}-4}{8x^{2}}
|
extreme points of f(x)=-4x^3
|
extreme\:points\:f(x)=-4x^{3}
|
inverse of f(x)=5-7x
|
inverse\:f(x)=5-7x
|
extreme points of f(x)=x^4-32x^2+256
|
extreme\:points\:f(x)=x^{4}-32x^{2}+256
|
perpendicular 5x+3y=15
|
perpendicular\:5x+3y=15
|
y=3^x
|
y=3^{x}
|
slope intercept of 2(3-x)=6y+1
|
slope\:intercept\:2(3-x)=6y+1
|
inverse of =\sqrt[3]{x^2}
|
inverse\:=\sqrt[3]{x^{2}}
|
inverse of 2e^{2x+3}
|
inverse\:2e^{2x+3}
|
range of f(x)=(x^2+x+1)/(x^2-7x+12)
|
range\:f(x)=\frac{x^{2}+x+1}{x^{2}-7x+12}
|
midpoint (1/2 ,4)(3, 1/4)
|
midpoint\:(\frac{1}{2},4)(3,\frac{1}{4})
|
intercepts of f(x)=-2x^2-7x+2
|
intercepts\:f(x)=-2x^{2}-7x+2
|
inverse of (x-2)/(x-1)
|
inverse\:\frac{x-2}{x-1}
|
parity f(x)=2x^3+1
|
parity\:f(x)=2x^{3}+1
|
inflection points of x^2ln(x/6)
|
inflection\:points\:x^{2}\ln(\frac{x}{6})
|
extreme points of f(x)=(x-2)(x-5)^3+4
|
extreme\:points\:f(x)=(x-2)(x-5)^{3}+4
|
inverse of (6x)/(x+5)
|
inverse\:\frac{6x}{x+5}
|
extreme points of y=4x^2-16x+11
|
extreme\:points\:y=4x^{2}-16x+11
|
shift 1/2 cos(3x+(pi)/2)
|
shift\:\frac{1}{2}\cos(3x+\frac{\pi}{2})
|
midpoint (-2,4)(7,0)
|
midpoint\:(-2,4)(7,0)
|
inflection points of 3/4*(x^2-1)^{2/3}
|
inflection\:points\:\frac{3}{4}\cdot\:(x^{2}-1)^{\frac{2}{3}}
|
frequency-2sin(x/4)+3
|
frequency\:-2\sin(\frac{x}{4})+3
|
monotone intervals 1/2*4^x
|
monotone\:intervals\:\frac{1}{2}\cdot\:4^{x}
|
x^2+x+2
|
x^{2}+x+2
|
critical points of f(x)=x^6-6x^5
|
critical\:points\:f(x)=x^{6}-6x^{5}
|
slope intercept of y+4=-5/2 (x-2)
|
slope\:intercept\:y+4=-\frac{5}{2}(x-2)
|
shift-2-3cos((pi x)/2)
|
shift\:-2-3\cos(\frac{\pi\:x}{2})
|
inverse of 5-4x^3
|
inverse\:5-4x^{3}
|
domain of f(x)=(5x-3)^3
|
domain\:f(x)=(5x-3)^{3}
|
asymptotes of f(x)=6-(2/(2x-1))
|
asymptotes\:f(x)=6-(\frac{2}{2x-1})
|
shift-7cos(6(x+(pi)/2))
|
shift\:-7\cos(6(x+\frac{\pi}{2}))
|
slope intercept of 12x-20y=180
|
slope\:intercept\:12x-20y=180
|
domain of f(x)=cos(x/2-7)+3
|
domain\:f(x)=\cos(\frac{x}{2}-7)+3
|
slope intercept of 3x+2y=6
|
slope\:intercept\:3x+2y=6
|
domain of f(x)= 2/(sqrt(x+1))
|
domain\:f(x)=\frac{2}{\sqrt{x+1}}
|
asymptotes of f(x)=(5x)/(2x+3)
|
asymptotes\:f(x)=\frac{5x}{2x+3}
|
inflection points of f(x)=2x^3+3x^2-4
|
inflection\:points\:f(x)=2x^{3}+3x^{2}-4
|
asymptotes of f(x)= 1/(3x^2+3x-18)
|
asymptotes\:f(x)=\frac{1}{3x^{2}+3x-18}
|
intercepts of f(x)=-2+3x-3x^2
|
intercepts\:f(x)=-2+3x-3x^{2}
|
domain of f(x)=(5x+35)/(7x)
|
domain\:f(x)=\frac{5x+35}{7x}
|
distance (2,-2)(5,0)
|
distance\:(2,-2)(5,0)
|
asymptotes of 2^{-x}+4
|
asymptotes\:2^{-x}+4
|
y=x^2
|
y=x^{2}
|
extreme points of f(x)=x^3-12x^2-27x+7
|
extreme\:points\:f(x)=x^{3}-12x^{2}-27x+7
|
domain of f(x)=e^{-x}-2
|
domain\:f(x)=e^{-x}-2
|
critical points of x^2(x+1)^3(x-4)^2
|
critical\:points\:x^{2}(x+1)^{3}(x-4)^{2}
|
parallel y=0
|
parallel\:y=0
|
slope intercept of 3x-2y=4
|
slope\:intercept\:3x-2y=4
|
critical points of sqrt(x^2+8)
|
critical\:points\:\sqrt{x^{2}+8}
|
domain of x-9
|
domain\:x-9
|
domain of f(x)= 1/4 x-1/10
|
domain\:f(x)=\frac{1}{4}x-\frac{1}{10}
|
parity f(x)=-4x^4+3x^3-2x^2+x-1
|
parity\:f(x)=-4x^{4}+3x^{3}-2x^{2}+x-1
|
domain of f(x)=(2x-5)/(x(x-3))
|
domain\:f(x)=\frac{2x-5}{x(x-3)}
|
slope of 3x-6y=-6
|
slope\:3x-6y=-6
|
domain of (2x-1)/(x+3)
|
domain\:\frac{2x-1}{x+3}
|
domain of f(x)=\sqrt[4]{x^2+5x-6}
|
domain\:f(x)=\sqrt[4]{x^{2}+5x-6}
|
inverse of f(x)=8(x-3)
|
inverse\:f(x)=8(x-3)
|
domain of 4/(x-2)
|
domain\:\frac{4}{x-2}
|
range of f(x)=sqrt(x)-5
|
range\:f(x)=\sqrt{x}-5
|
domain of f(x)= 1/(sqrt((x-2)^2))
|
domain\:f(x)=\frac{1}{\sqrt{(x-2)^{2}}}
|
asymptotes of f(x)=(x^3-8)/(x^2-3x+2)
|
asymptotes\:f(x)=\frac{x^{3}-8}{x^{2}-3x+2}
|
inverse of ln(x)-ln(x-1)
|
inverse\:\ln(x)-\ln(x-1)
|
parity ln(sec(x)+tan(x))+sin(x)
|
parity\:\ln(\sec(x)+\tan(x))+\sin(x)
|
domain of sqrt(2-x)+9
|
domain\:\sqrt{2-x}+9
|
critical points of sqrt(x)-sqrt(x^3)
|
critical\:points\:\sqrt{x}-\sqrt{x^{3}}
|
domain of f(x)=-x+9
|
domain\:f(x)=-x+9
|
parity f(x)=3x^3+3x
|
parity\:f(x)=3x^{3}+3x
|
inverse of (x+1)/(x-2)
|
inverse\:\frac{x+1}{x-2}
|
slope of 52
|
slope\:52
|
extreme points of f(x)=-4x^2+150x+250
|
extreme\:points\:f(x)=-4x^{2}+150x+250
|
periodicity of cot(x)
|
periodicity\:\cot(x)
|
intercepts of f(x)=3x+4y=12
|
intercepts\:f(x)=3x+4y=12
|
critical points of x^3
|
critical\:points\:x^{3}
|
domain of f(x)=x^3-6x^2+9x
|
domain\:f(x)=x^{3}-6x^{2}+9x
|
domain of x^2-2
|
domain\:x^{2}-2
|
intercepts of x^2-2x-3
|
intercepts\:x^{2}-2x-3
|
inverse of f(x)=x^2+3x-1
|
inverse\:f(x)=x^{2}+3x-1
|
slope intercept of-x-5
|
slope\:intercept\:-x-5
|
domain of f(x)=(sqrt(x+32))/(x-6)
|
domain\:f(x)=\frac{\sqrt{x+32}}{x-6}
|
domain of sqrt(x^2+25)
|
domain\:\sqrt{x^{2}+25}
|