inverse of f(x)=2x^2-8x
|
inverse\:f(x)=2x^{2}-8x
|
midpoint (1,5)(5,6)
|
midpoint\:(1,5)(5,6)
|
domain of 5x^3-15x
|
domain\:5x^{3}-15x
|
extreme points of xe^{-2x}
|
extreme\:points\:xe^{-2x}
|
monotone intervals f(x)=-x^4-8x^3
|
monotone\:intervals\:f(x)=-x^{4}-8x^{3}
|
intercepts of f(x)=x^3-8x^2+9x+18
|
intercepts\:f(x)=x^{3}-8x^{2}+9x+18
|
inverse of f(x)=(3x)\div (x-2)
|
inverse\:f(x)=(3x)\div\:(x-2)
|
domain of f(x)=sqrt(1-2sin(x))
|
domain\:f(x)=\sqrt{1-2\sin(x)}
|
line (0,-3),(6,0)
|
line\:(0,-3),(6,0)
|
inverse of f(x)=\sqrt[4]{x+3}+7
|
inverse\:f(x)=\sqrt[4]{x+3}+7
|
perpendicular 2x+3
|
perpendicular\:2x+3
|
inflection points of f(x)=x^4-3x^2
|
inflection\:points\:f(x)=x^{4}-3x^{2}
|
distance (1,3)(5,6)
|
distance\:(1,3)(5,6)
|
domain of f(x)= 6/(6-x)
|
domain\:f(x)=\frac{6}{6-x}
|
inverse of f(x)=2x+16
|
inverse\:f(x)=2x+16
|
asymptotes of (3x^2+5x-12)/(x^3-3x^2)
|
asymptotes\:\frac{3x^{2}+5x-12}{x^{3}-3x^{2}}
|
domain of f(x)=(35)/(x(x+7))
|
domain\:f(x)=\frac{35}{x(x+7)}
|
domain of (x+4)/(x^2-4)
|
domain\:\frac{x+4}{x^{2}-4}
|
extreme points of f(x)=(1-x)^{1/3}
|
extreme\:points\:f(x)=(1-x)^{\frac{1}{3}}
|
range of 4/(t^2-9)
|
range\:\frac{4}{t^{2}-9}
|
slope intercept of x+3y=-6
|
slope\:intercept\:x+3y=-6
|
midpoint (8,10),(2,6)
|
midpoint\:(8,10),(2,6)
|
domain of sqrt((x+2)(x-3))
|
domain\:\sqrt{(x+2)(x-3)}
|
domain of f(x)=(x+5)/(x^2+3)
|
domain\:f(x)=\frac{x+5}{x^{2}+3}
|
intercepts of f(x)=1
|
intercepts\:f(x)=1
|
range of-2x+3
|
range\:-2x+3
|
intercepts of e^{-0.7t}*cos(6pi*t)
|
intercepts\:e^{-0.7t}\cdot\:\cos(6\pi\cdot\:t)
|
monotone intervals f(x)=-2x^3+3x^2
|
monotone\:intervals\:f(x)=-2x^{3}+3x^{2}
|
inverse of f(x)=8^{x+2}-13
|
inverse\:f(x)=8^{x+2}-13
|
intercepts of f(x)=x^2-2x-3
|
intercepts\:f(x)=x^{2}-2x-3
|
domain of f(x)= 5/(x-1)
|
domain\:f(x)=\frac{5}{x-1}
|
domain of g(x)=(sqrt(4+x))/(8-x)
|
domain\:g(x)=\frac{\sqrt{4+x}}{8-x}
|
critical points of x^3-27x
|
critical\:points\:x^{3}-27x
|
inverse of f(x)= x/(x+20)
|
inverse\:f(x)=\frac{x}{x+20}
|
domain of f(x)=3^xx-2
|
domain\:f(x)=3^{x}x-2
|
domain of f(x)=sqrt(6-t)
|
domain\:f(x)=\sqrt{6-t}
|
distance (1,0)(0,2)
|
distance\:(1,0)(0,2)
|
extreme points of f(x)=x^3+12x^2+5
|
extreme\:points\:f(x)=x^{3}+12x^{2}+5
|
domain of f(x)= 1/(3(sqrt(2x+6))-12)
|
domain\:f(x)=\frac{1}{3(\sqrt{2x+6})-12}
|
asymptotes of f(x)=(3x^2)/(x^2-4)
|
asymptotes\:f(x)=\frac{3x^{2}}{x^{2}-4}
|
asymptotes of f(x)=(3x+3)/(x+2)
|
asymptotes\:f(x)=\frac{3x+3}{x+2}
|
intercepts of f(x)= 4/9 x^3-2x^2
|
intercepts\:f(x)=\frac{4}{9}x^{3}-2x^{2}
|
inverse of f(x)= 3/2 x-3
|
inverse\:f(x)=\frac{3}{2}x-3
|
midpoint (-4,6)(-5,-7)
|
midpoint\:(-4,6)(-5,-7)
|
inverse of f(x)=x^{1/3}+2
|
inverse\:f(x)=x^{\frac{1}{3}}+2
|
domain of (5x-4)/(7x+3)
|
domain\:\frac{5x-4}{7x+3}
|
midpoint (4,3)(6,0)
|
midpoint\:(4,3)(6,0)
|
inverse of f(x)=(x+3)/(x-4)
|
inverse\:f(x)=\frac{x+3}{x-4}
|
inverse of y=7x+8
|
inverse\:y=7x+8
|
inverse of f(x)=x+1/3
|
inverse\:f(x)=x+\frac{1}{3}
|
slope intercept of 6x+3y=5.97
|
slope\:intercept\:6x+3y=5.97
|
asymptotes of f(x)=(x+8)/(x+1)
|
asymptotes\:f(x)=\frac{x+8}{x+1}
|
inverse of y=-5x+2
|
inverse\:y=-5x+2
|
parity (2x-2x^4+x^5+1)\div (x^3-x^2-1)
|
parity\:(2x-2x^{4}+x^{5}+1)\div\:(x^{3}-x^{2}-1)
|
inverse of f(x)=((3+4x))/(2-5x)
|
inverse\:f(x)=\frac{(3+4x)}{2-5x}
|
line m= 1/3 ,\at (3,9)
|
line\:m=\frac{1}{3},\at\:(3,9)
|
inverse of f(x)=(3-x)/(x+1)
|
inverse\:f(x)=\frac{3-x}{x+1}
|
parity (x^2-3x-2)\div (4x^4+5x-4)
|
parity\:(x^{2}-3x-2)\div\:(4x^{4}+5x-4)
|
extreme points of f(x)=sin^2(x/4)
|
extreme\:points\:f(x)=\sin^{2}(\frac{x}{4})
|
inverse of f(x)=-2x+8
|
inverse\:f(x)=-2x+8
|
asymptotes of (x^2-x)/(x^2-4x+3)
|
asymptotes\:\frac{x^{2}-x}{x^{2}-4x+3}
|
inflection points of x^4-2x^2+3
|
inflection\:points\:x^{4}-2x^{2}+3
|
inverse of f(x)=-1/2 sqrt(x+3,)x>=-3
|
inverse\:f(x)=-\frac{1}{2}\sqrt{x+3,}x\ge\:-3
|
perpendicular y=3x-1,\at (-1,-1)
|
perpendicular\:y=3x-1,\at\:(-1,-1)
|
domain of f(x)=(x^3)/(sqrt(2-x))
|
domain\:f(x)=\frac{x^{3}}{\sqrt{2-x}}
|
critical points of f(x)=8x^3+x^2+8x
|
critical\:points\:f(x)=8x^{3}+x^{2}+8x
|
asymptotes of f(x)= 5/((x-3)^2)
|
asymptotes\:f(x)=\frac{5}{(x-3)^{2}}
|
inverse of f(x)= 1/2 x+1
|
inverse\:f(x)=\frac{1}{2}x+1
|
domain of ((x^2-4))/(x^3+x^2-4x-4)
|
domain\:\frac{(x^{2}-4)}{x^{3}+x^{2}-4x-4}
|
domain of f(x)=\sqrt[3]{x^2-3}
|
domain\:f(x)=\sqrt[3]{x^{2}-3}
|
slope intercept of y=8
|
slope\:intercept\:y=8
|
intercepts of f(x)=5x^2
|
intercepts\:f(x)=5x^{2}
|
inverse of 1+(8+x)^{1/2}
|
inverse\:1+(8+x)^{\frac{1}{2}}
|
domain of f(x)=21x^2+32x+12
|
domain\:f(x)=21x^{2}+32x+12
|
inverse of f(x)= 1/3 (x-4)^2-2
|
inverse\:f(x)=\frac{1}{3}(x-4)^{2}-2
|
range of f(x)=\sqrt[3]{x+8}
|
range\:f(x)=\sqrt[3]{x+8}
|
slope of 2(1,2)
|
slope\:2(1,2)
|
asymptotes of f(x)=(2x)/x
|
asymptotes\:f(x)=\frac{2x}{x}
|
inverse of f(x)=4x+1
|
inverse\:f(x)=4x+1
|
parallel x-3y=-3
|
parallel\:x-3y=-3
|
parallel 3x-2y=6
|
parallel\:3x-2y=6
|
domain of (4/(x+3))*(2x^2)
|
domain\:(\frac{4}{x+3})\cdot\:(2x^{2})
|
intercepts of f(x)=6x+5y=0
|
intercepts\:f(x)=6x+5y=0
|
extreme points of f(x)=x^2ln(x)
|
extreme\:points\:f(x)=x^{2}\ln(x)
|
intercepts of h(t)=-16t^2+32t+8
|
intercepts\:h(t)=-16t^{2}+32t+8
|
inverse of 4x+15
|
inverse\:4x+15
|
inverse of f(x)=2n+1
|
inverse\:f(x)=2n+1
|
slope of y=5x-4
|
slope\:y=5x-4
|
perpendicular 8
|
perpendicular\:8
|
parity 5xsqrt(2x^2+3dx)
|
parity\:5x\sqrt{2x^{2}+3dx}
|
inverse of f(x)= 1/3 (x^2+2)^{3/2}
|
inverse\:f(x)=\frac{1}{3}(x^{2}+2)^{\frac{3}{2}}
|
asymptotes of f(x)=((4x^2-10))/((2x-4))
|
asymptotes\:f(x)=\frac{(4x^{2}-10)}{(2x-4)}
|
critical points of f(x)=sqrt(8-x^3)
|
critical\:points\:f(x)=\sqrt{8-x^{3}}
|
domain of f(x)=sqrt(x)+4
|
domain\:f(x)=\sqrt{x}+4
|
parity f(x)=5sec(x)-4x
|
parity\:f(x)=5\sec(x)-4x
|
extreme points of f(x)=-x^3-6x^2+3
|
extreme\:points\:f(x)=-x^{3}-6x^{2}+3
|
asymptotes of f(x)=(5x^2-3)/(x+2)
|
asymptotes\:f(x)=\frac{5x^{2}-3}{x+2}
|
range of sqrt(x+15)
|
range\:\sqrt{x+15}
|
domain of f(x)= 1/(x+2)
|
domain\:f(x)=\frac{1}{x+2}
|
range of f(x)=(3x^2)/(x^2-4)
|
range\:f(x)=\frac{3x^{2}}{x^{2}-4}
|