range of f(x)=\sqrt[3]{x-4}
|
range\:f(x)=\sqrt[3]{x-4}
|
domain of f(x)= 9/(x-2)
|
domain\:f(x)=\frac{9}{x-2}
|
intercepts of f(x)=(x-5)^2-1
|
intercepts\:f(x)=(x-5)^{2}-1
|
domain of y(t)= 1/(t^2)cos^2(t)
|
domain\:y(t)=\frac{1}{t^{2}}\cos^{2}(t)
|
slope of f(x)(x^2-3)^2(x^2+3)^2=0
|
slope\:f(x)(x^{2}-3)^{2}(x^{2}+3)^{2}=0
|
domain of f(x)=(x+7)^2
|
domain\:f(x)=(x+7)^{2}
|
asymptotes of (3x+27)/(x^2+6x)
|
asymptotes\:\frac{3x+27}{x^{2}+6x}
|
symmetry (x-11)^2-4
|
symmetry\:(x-11)^{2}-4
|
inverse of sqrt(8x+6)
|
inverse\:\sqrt{8x+6}
|
perpendicular 2x+3y=8,\at (-1,-2)
|
perpendicular\:2x+3y=8,\at\:(-1,-2)
|
perpendicular y=3x-4,\at (-4,5)
|
perpendicular\:y=3x-4,\at\:(-4,5)
|
critical points of 4x^3-33x^2+84x-60
|
critical\:points\:4x^{3}-33x^{2}+84x-60
|
asymptotes of f(x)=(3x+1)/(4x^2-1)
|
asymptotes\:f(x)=\frac{3x+1}{4x^{2}-1}
|
midpoint (-4,-3)(6,-7)
|
midpoint\:(-4,-3)(6,-7)
|
domain of f(x)= 9/(x^2-16)
|
domain\:f(x)=\frac{9}{x^{2}-16}
|
range of 1/((x-3)^3)
|
range\:\frac{1}{(x-3)^{3}}
|
inverse of 2/(x+7)
|
inverse\:\frac{2}{x+7}
|
critical points of f(x)=x^3-4x^2+6x+60
|
critical\:points\:f(x)=x^{3}-4x^{2}+6x+60
|
domain of f(x)=e^{5sqrt(x)}
|
domain\:f(x)=e^{5\sqrt{x}}
|
parity (1/2)^x-2
|
parity\:(\frac{1}{2})^{x}-2
|
domain of f(x)=1+(14)/x
|
domain\:f(x)=1+\frac{14}{x}
|
inverse of f(x)=x^3-6
|
inverse\:f(x)=x^{3}-6
|
inverse of f(x)=-4x+12
|
inverse\:f(x)=-4x+12
|
domain of f(x)=(120-6w)w^2
|
domain\:f(x)=(120-6w)w^{2}
|
line (-4,3)(0,3)
|
line\:(-4,3)(0,3)
|
asymptotes of 4
|
asymptotes\:4
|
domain of f(x)=3+sqrt(x+5)
|
domain\:f(x)=3+\sqrt{x+5}
|
asymptotes of f(x)=(x^2-9)/(x-3)
|
asymptotes\:f(x)=\frac{x^{2}-9}{x-3}
|
parallel y=x+5,\at (3,2)
|
parallel\:y=x+5,\at\:(3,2)
|
domain of x^2-9
|
domain\:x^{2}-9
|
critical points of x^3-3x^2-9x+1
|
critical\:points\:x^{3}-3x^{2}-9x+1
|
parity 6x^2sin(x)tan(x)
|
parity\:6x^{2}\sin(x)\tan(x)
|
slope intercept of 3x+4y=5
|
slope\:intercept\:3x+4y=5
|
inverse of f(x)=h(x)= 5/2 x+4
|
inverse\:f(x)=h(x)=\frac{5}{2}x+4
|
domain of f(x)=(15)/(x+3)
|
domain\:f(x)=\frac{15}{x+3}
|
inverse of f(x)=4-6x^2,x< 0
|
inverse\:f(x)=4-6x^{2},x\lt\:0
|
slope intercept of 2x-11y=7
|
slope\:intercept\:2x-11y=7
|
domain of f(x)=(sqrt(x+3))/(x-2)
|
domain\:f(x)=\frac{\sqrt{x+3}}{x-2}
|
range of f(x)=sqrt(x+3)+8
|
range\:f(x)=\sqrt{x+3}+8
|
domain of (x+3)/(4-sqrt(x^2-9))
|
domain\:\frac{x+3}{4-\sqrt{x^{2}-9}}
|
extreme points of f(x)=ln(2-x^2)
|
extreme\:points\:f(x)=\ln(2-x^{2})
|
domain of (sqrt(x+8)+2)/(x+2)
|
domain\:\frac{\sqrt{x+8}+2}{x+2}
|
slope of y=-7
|
slope\:y=-7
|
inverse of f(x)=4-8x
|
inverse\:f(x)=4-8x
|
range of (9-3x)/(x-4)
|
range\:\frac{9-3x}{x-4}
|
asymptotes of f(x)=-3tan(1/2 x)
|
asymptotes\:f(x)=-3\tan(\frac{1}{2}x)
|
line (-2,-2)(1,-2)
|
line\:(-2,-2)(1,-2)
|
domain of h(x)= 6/((x+5)(x-3))
|
domain\:h(x)=\frac{6}{(x+5)(x-3)}
|
domain of (y-10)/(y^2+3)
|
domain\:\frac{y-10}{y^{2}+3}
|
domain of sqrt(2x-44)
|
domain\:\sqrt{2x-44}
|
domain of sqrt(-1-x)
|
domain\:\sqrt{-1-x}
|
domain of 0
|
domain\:0
|
domain of (x-2)/(x^2+x-6)
|
domain\:\frac{x-2}{x^{2}+x-6}
|
inverse of f(x)=(x+5)/(x-1)
|
inverse\:f(x)=\frac{x+5}{x-1}
|
inverse of f(x)=sqrt(7-3x)
|
inverse\:f(x)=\sqrt{7-3x}
|
domain of 2/(5+x)
|
domain\:\frac{2}{5+x}
|
critical points of f(x)=36x-2x^2
|
critical\:points\:f(x)=36x-2x^{2}
|
asymptotes of f(x)=(2x^2+5x-3)/(x+3)
|
asymptotes\:f(x)=\frac{2x^{2}+5x-3}{x+3}
|
range of f(x)=((e^x+1))/(e^x-2)
|
range\:f(x)=\frac{(e^{x}+1)}{e^{x}-2}
|
parallel 7x-y=-14,\at (0,0)
|
parallel\:7x-y=-14,\at\:(0,0)
|
extreme points of f(x)= 1/(x^2-4)
|
extreme\:points\:f(x)=\frac{1}{x^{2}-4}
|
midpoint (2.7,-2.8)(2.8,-2.7)
|
midpoint\:(2.7,-2.8)(2.8,-2.7)
|
domain of f(x)=(2x(x+1))/(x+1)
|
domain\:f(x)=\frac{2x(x+1)}{x+1}
|
midpoint (-2,-7)(0,5)
|
midpoint\:(-2,-7)(0,5)
|
asymptotes of (x^3-3x^2-4x)/(x-4)
|
asymptotes\:\frac{x^{3}-3x^{2}-4x}{x-4}
|
domain of f(x)=(1-3x)/2
|
domain\:f(x)=\frac{1-3x}{2}
|
asymptotes of-(1/3)^x
|
asymptotes\:-(\frac{1}{3})^{x}
|
domain of f(x)=(2x^3)/(2x+2)
|
domain\:f(x)=\frac{2x^{3}}{2x+2}
|
inverse of f(x)=\sqrt[3]{x}+8
|
inverse\:f(x)=\sqrt[3]{x}+8
|
parallel y=3x-8
|
parallel\:y=3x-8
|
range of f(x)=7x^2+6
|
range\:f(x)=7x^{2}+6
|
parity f(x)=-x^4-2x
|
parity\:f(x)=-x^{4}-2x
|
critical points of (5x^2(x-3)(x-5))/(54)
|
critical\:points\:\frac{5x^{2}(x-3)(x-5)}{54}
|
extreme points of x^4-x^2
|
extreme\:points\:x^{4}-x^{2}
|
domain of x^2-4x+3
|
domain\:x^{2}-4x+3
|
parity y=sec(theta)(theta-tan(theta))
|
parity\:y=\sec(\theta)(\theta-\tan(\theta))
|
asymptotes of f(x)= 1/(x+2)-3
|
asymptotes\:f(x)=\frac{1}{x+2}-3
|
amplitude of 4sin((2pitheta)/5)
|
amplitude\:4\sin(\frac{2\pi\theta}{5})
|
parity f(x)=x^3-5x+1
|
parity\:f(x)=x^{3}-5x+1
|
asymptotes of x/(\sqrt[3]{x^2-1)}
|
asymptotes\:\frac{x}{\sqrt[3]{x^{2}-1}}
|
inflection points of ln(x^2+1)
|
inflection\:points\:\ln(x^{2}+1)
|
domain of f(x)=sqrt(23-x)
|
domain\:f(x)=\sqrt{23-x}
|
domain of sqrt(-x)
|
domain\:\sqrt{-x}
|
slope of-1.4735x+91.61
|
slope\:-1.4735x+91.61
|
domain of y=x
|
domain\:y=x
|
inverse of y=x^{1/2}-2
|
inverse\:y=x^{\frac{1}{2}}-2
|
inverse of f(x)=2^{(x+1)}
|
inverse\:f(x)=2^{(x+1)}
|
monotone intervals f(x)=x^2+4x
|
monotone\:intervals\:f(x)=x^{2}+4x
|
domain of f(x)=sqrt(2x+4)
|
domain\:f(x)=\sqrt{2x+4}
|
inverse of f(x)=(e^x-3)/2
|
inverse\:f(x)=\frac{e^{x}-3}{2}
|
domain of (sqrt(1+4x^6))/(2-x^3)
|
domain\:\frac{\sqrt{1+4x^{6}}}{2-x^{3}}
|
inverse of f(x)= 2/3 (x-1)^2-3
|
inverse\:f(x)=\frac{2}{3}(x-1)^{2}-3
|
domain of f(x)=-2sqrt(x-3)-1
|
domain\:f(x)=-2\sqrt{x-3}-1
|
asymptotes of 4/((x-2)^2)
|
asymptotes\:\frac{4}{(x-2)^{2}}
|
domain of f(x)=140(1.6)^x
|
domain\:f(x)=140(1.6)^{x}
|
domain of f(x)=x^2-4
|
domain\:f(x)=x^{2}-4
|
inflection points of f(x)=(x+5)^{2/7}
|
inflection\:points\:f(x)=(x+5)^{\frac{2}{7}}
|
parity tan^{1/2}(x)dx
|
parity\:\tan^{\frac{1}{2}}(x)dx
|
amplitude of sin(6x)
|
amplitude\:\sin(6x)
|
asymptotes of f(x)=(x+6)/(x(x+11))
|
asymptotes\:f(x)=\frac{x+6}{x(x+11)}
|