extreme points of f(x)=2x^3-3x^2-72x-12
|
extreme\:points\:f(x)=2x^{3}-3x^{2}-72x-12
|
domain of sqrt(15-5x)
|
domain\:\sqrt{15-5x}
|
symmetry 3x^2-12x+11
|
symmetry\:3x^{2}-12x+11
|
range of f(x)= t/(sqrt(t+1))
|
range\:f(x)=\frac{t}{\sqrt{t+1}}
|
inverse of f(x)= 5/2 x-2
|
inverse\:f(x)=\frac{5}{2}x-2
|
inflection points of (-2)/(x^2)
|
inflection\:points\:\frac{-2}{x^{2}}
|
domain of f(x)=5+\sqrt[3]{2(x+1)}
|
domain\:f(x)=5+\sqrt[3]{2(x+1)}
|
parallel 10
|
parallel\:10
|
distance (2,16)(-3,5)
|
distance\:(2,16)(-3,5)
|
domain of (5x)/(x+2)
|
domain\:\frac{5x}{x+2}
|
range of f(x)=(x^2+x-6)/(x^2+6x+9)
|
range\:f(x)=\frac{x^{2}+x-6}{x^{2}+6x+9}
|
periodicity of f(x)=5sin(-2x+(pi)/3)
|
periodicity\:f(x)=5\sin(-2x+\frac{\pi}{3})
|
slope intercept of 3k+9a=75
|
slope\:intercept\:3k+9a=75
|
monotone intervals f(x)=4x^3+21x^2+18x+2
|
monotone\:intervals\:f(x)=4x^{3}+21x^{2}+18x+2
|
periodicity of f(x)=sin(6x)
|
periodicity\:f(x)=\sin(6x)
|
slope of 6x+10y=6
|
slope\:6x+10y=6
|
shift f(x)=tan(2x-(2pi)/3)+5
|
shift\:f(x)=\tan(2x-\frac{2\pi}{3})+5
|
domain of-7/(2t^{(3/2))}
|
domain\:-\frac{7}{2t^{(\frac{3}{2})}}
|
domain of f(x)= x/(x^2-1)
|
domain\:f(x)=\frac{x}{x^{2}-1}
|
asymptotes of f(x)=-3/(x-2)
|
asymptotes\:f(x)=-\frac{3}{x-2}
|
range of f(x)= 1/(2x^2-x-6)
|
range\:f(x)=\frac{1}{2x^{2}-x-6}
|
distance (0,7)(4,6)
|
distance\:(0,7)(4,6)
|
domain of f(x)=\sqrt[3]{x/(x^2+6x-16)}
|
domain\:f(x)=\sqrt[3]{\frac{x}{x^{2}+6x-16}}
|
extreme points of f(x)=18x^{2/3}-6x
|
extreme\:points\:f(x)=18x^{\frac{2}{3}}-6x
|
domain of f(x)=sqrt(-x+5)
|
domain\:f(x)=\sqrt{-x+5}
|
slope of x+5y=-5
|
slope\:x+5y=-5
|
inverse of ((x+7))/(sqrt(x))
|
inverse\:\frac{(x+7)}{\sqrt{x}}
|
critical points of f(x)=x^3+2x
|
critical\:points\:f(x)=x^{3}+2x
|
range of f(x)= 1/(x^2-6x+11)
|
range\:f(x)=\frac{1}{x^{2}-6x+11}
|
amplitude of-10cos((pi x)/6)
|
amplitude\:-10\cos(\frac{\pi\:x}{6})
|
domain of ((4+x)/(1-4x))
|
domain\:(\frac{4+x}{1-4x})
|
domain of (x^3)/(x^2-1)
|
domain\:\frac{x^{3}}{x^{2}-1}
|
critical points of y=x^{9/2}-6x^2
|
critical\:points\:y=x^{\frac{9}{2}}-6x^{2}
|
symmetry (x+4)^2-9
|
symmetry\:(x+4)^{2}-9
|
domain of f(x)=(3x)/(7x-6)
|
domain\:f(x)=\frac{3x}{7x-6}
|
domain of f(x)=(9x)/(x(x^2-49))
|
domain\:f(x)=\frac{9x}{x(x^{2}-49)}
|
amplitude of-1+2sin(x+(pi)/3)
|
amplitude\:-1+2\sin(x+\frac{\pi}{3})
|
parity 2x-1
|
parity\:2x-1
|
domain of f(x)=(-1-sqrt(1-20x))/(10)
|
domain\:f(x)=\frac{-1-\sqrt{1-20x}}{10}
|
domain of (x^3)/(x^2-3x+2)
|
domain\:\frac{x^{3}}{x^{2}-3x+2}
|
distance (-3,-4)(-7,3)
|
distance\:(-3,-4)(-7,3)
|
asymptotes of f(x)=(2x^2)/(3x-1)
|
asymptotes\:f(x)=\frac{2x^{2}}{3x-1}
|
distance (-2,0)(2,3)
|
distance\:(-2,0)(2,3)
|
inverse of sqrt(x^2-3x+2)
|
inverse\:\sqrt{x^{2}-3x+2}
|
range of f(x)=((x-3)^2)/(x^2)
|
range\:f(x)=\frac{(x-3)^{2}}{x^{2}}
|
intercepts of f(x)=sqrt(1-x)
|
intercepts\:f(x)=\sqrt{1-x}
|
domain of f(x)=ln(1+((x+1))/(x+4))
|
domain\:f(x)=\ln(1+\frac{(x+1)}{x+4})
|
extreme points of f(x)=x^5+5x^4
|
extreme\:points\:f(x)=x^{5}+5x^{4}
|
domain of f(x)=6x+9
|
domain\:f(x)=6x+9
|
domain of f(x)=x^3-7
|
domain\:f(x)=x^{3}-7
|
inverse of f(x)=(6x)/(x^2+9)
|
inverse\:f(x)=\frac{6x}{x^{2}+9}
|
periodicity of 6sin((pi)/3 x)+1
|
periodicity\:6\sin(\frac{\pi}{3}x)+1
|
domain of f(x)=sqrt(9x-x^2)
|
domain\:f(x)=\sqrt{9x-x^{2}}
|
inverse of 1/(sqrt(x+3))
|
inverse\:\frac{1}{\sqrt{x+3}}
|
intercepts of 6tan(0.2x)
|
intercepts\:6\tan(0.2x)
|
domain of x/(x^2-25)
|
domain\:\frac{x}{x^{2}-25}
|
amplitude of-1/2 sin(1/4 x)
|
amplitude\:-\frac{1}{2}\sin(\frac{1}{4}x)
|
midpoint (12,2)(8,-4)
|
midpoint\:(12,2)(8,-4)
|
y=cos(x)
|
y=\cos(x)
|
critical points of (-x^3)/4+2x^2+8/3-4x
|
critical\:points\:\frac{-x^{3}}{4}+2x^{2}+\frac{8}{3}-4x
|
monotone intervals f(x)=x^2-5x
|
monotone\:intervals\:f(x)=x^{2}-5x
|
range of-sqrt(2x-3)+6
|
range\:-\sqrt{2x-3}+6
|
domain of x^3+2x^2-3x+1
|
domain\:x^{3}+2x^{2}-3x+1
|
inverse of y=log_{0.5}(x)
|
inverse\:y=\log_{0.5}(x)
|
parity f(x)=2x+1
|
parity\:f(x)=2x+1
|
midpoint (2,6)(10,8)
|
midpoint\:(2,6)(10,8)
|
domain of ((5t+1))/(sqrt(t^3-t^2-8t))
|
domain\:\frac{(5t+1)}{\sqrt{t^{3}-t^{2}-8t}}
|
line (-2,-3)(-5,-5)
|
line\:(-2,-3)(-5,-5)
|
shift 1/3 cos(x)
|
shift\:\frac{1}{3}\cos(x)
|
parity f(x)=3x^2-4x+4
|
parity\:f(x)=3x^{2}-4x+4
|
inverse of f(x)=ln(x+200)
|
inverse\:f(x)=\ln(x+200)
|
slope of-8(-6,5)
|
slope\:-8(-6,5)
|
critical points of x^3e^x
|
critical\:points\:x^{3}e^{x}
|
parity f(x)=\sqrt[3]{4x^2}
|
parity\:f(x)=\sqrt[3]{4x^{2}}
|
slope of x+4y=24
|
slope\:x+4y=24
|
range of-490t^2+75t+12
|
range\:-490t^{2}+75t+12
|
inverse of (x-2)^2-7
|
inverse\:(x-2)^{2}-7
|
slope of 3/4
|
slope\:\frac{3}{4}
|
range of-1/(x+1)
|
range\:-\frac{1}{x+1}
|
domain of f(x)=sqrt(-3x+1)
|
domain\:f(x)=\sqrt{-3x+1}
|
domain of e^{1/x}
|
domain\:e^{\frac{1}{x}}
|
domain of r(x)=(x+22)/(x^2+10x+16)
|
domain\:r(x)=\frac{x+22}{x^{2}+10x+16}
|
asymptotes of (x+1)/(x^2-x-2)
|
asymptotes\:\frac{x+1}{x^{2}-x-2}
|
x+2
|
x+2
|
range of-tan(x)
|
range\:-\tan(x)
|
distance (-2,2)(3,1)
|
distance\:(-2,2)(3,1)
|
slope of y=9x+8
|
slope\:y=9x+8
|
asymptotes of f(x)=-3log_{5}(x+4)
|
asymptotes\:f(x)=-3\log_{5}(x+4)
|
inverse of sqrt(2-x/(x-2))
|
inverse\:\sqrt{2-\frac{x}{x-2}}
|
y=-3x^2
|
y=-3x^{2}
|
distance (2,4)(1,3)
|
distance\:(2,4)(1,3)
|
asymptotes of f(x)=(x^2-4)/(3x(x-2))
|
asymptotes\:f(x)=\frac{x^{2}-4}{3x(x-2)}
|
inverse of (2x-5)/(5x+6)
|
inverse\:\frac{2x-5}{5x+6}
|
domain of f(x)= 3/(sqrt(x+2))
|
domain\:f(x)=\frac{3}{\sqrt{x+2}}
|
slope of 3+4=2y-9
|
slope\:3+4=2y-9
|
domain of f(x)= 3/(sqrt(x+19)-2)
|
domain\:f(x)=\frac{3}{\sqrt{x+19}-2}
|
inverse of (2x+5)/(x-7)
|
inverse\:\frac{2x+5}{x-7}
|
domain of f(x)=(sqrt(x+3))/(3x-6)
|
domain\:f(x)=\frac{\sqrt{x+3}}{3x-6}
|
domain of f(x)=(2x)/((x+1)^2)
|
domain\:f(x)=\frac{2x}{(x+1)^{2}}
|
domain of (7a)/((a+1)(a-4))
|
domain\:\frac{7a}{(a+1)(a-4)}
|