parallel y=2x+4(4,4)
|
parallel\:y=2x+4(4,4)
|
domain of f(x)= x/(sqrt(4-x^2))
|
domain\:f(x)=\frac{x}{\sqrt{4-x^{2}}}
|
periodicity of f(x)=4sec(6x-2pi)-12
|
periodicity\:f(x)=4\sec(6x-2\pi)-12
|
inverse of f(x)=(x+2)^2-1
|
inverse\:f(x)=(x+2)^{2}-1
|
inverse of log_{2}(x-4)
|
inverse\:\log_{2}(x-4)
|
range of tan(2theta-(11pi)/6)-1
|
range\:\tan(2\theta-\frac{11\pi}{6})-1
|
slope of y=3x-8
|
slope\:y=3x-8
|
domain of y=(1/6)^x
|
domain\:y=(\frac{1}{6})^{x}
|
intercepts of f(x)=-4x^2-6x+1
|
intercepts\:f(x)=-4x^{2}-6x+1
|
critical points of f(x)=0.05x+25+(300)/x
|
critical\:points\:f(x)=0.05x+25+\frac{300}{x}
|
extreme points of f(x)=-x^2+3x
|
extreme\:points\:f(x)=-x^{2}+3x
|
domain of f(x)= x/(-8x+3)
|
domain\:f(x)=\frac{x}{-8x+3}
|
inverse of h(x)=6x+1
|
inverse\:h(x)=6x+1
|
perpendicular y=-5x-6
|
perpendicular\:y=-5x-6
|
extreme points of f(x)=(e^x)/(6+e^x)
|
extreme\:points\:f(x)=\frac{e^{x}}{6+e^{x}}
|
inverse of f(x)=x^3+3
|
inverse\:f(x)=x^{3}+3
|
inverse of 2.1786x+25.2
|
inverse\:2.1786x+25.2
|
domain of f(x)=sqrt(30+x-x^2)
|
domain\:f(x)=\sqrt{30+x-x^{2}}
|
range of f(x)=-x+8
|
range\:f(x)=-x+8
|
f(x)=x^4
|
f(x)=x^{4}
|
intercepts of f(x)=(2x-1)/(x+3)
|
intercepts\:f(x)=\frac{2x-1}{x+3}
|
parallel y=-1/3 x+9
|
parallel\:y=-\frac{1}{3}x+9
|
asymptotes of f(x)= 7/(x^2-2x-24)
|
asymptotes\:f(x)=\frac{7}{x^{2}-2x-24}
|
asymptotes of f(x)=-5x^4
|
asymptotes\:f(x)=-5x^{4}
|
domain of (1-3t)/(6+t)
|
domain\:\frac{1-3t}{6+t}
|
perpendicular y=-6,\at (10,-10)
|
perpendicular\:y=-6,\at\:(10,-10)
|
midpoint (7,2)(-3,4)
|
midpoint\:(7,2)(-3,4)
|
domain of f(x)=(x-1)/(2x-3)
|
domain\:f(x)=\frac{x-1}{2x-3}
|
asymptotes of f(x)=2^{x+1}-1
|
asymptotes\:f(x)=2^{x+1}-1
|
extreme points of f(x)=(x+5)^{6/7}
|
extreme\:points\:f(x)=(x+5)^{\frac{6}{7}}
|
slope of 3x+5y=10
|
slope\:3x+5y=10
|
asymptotes of (4x^2+6x-4)/(2x^2+13x+15)
|
asymptotes\:\frac{4x^{2}+6x-4}{2x^{2}+13x+15}
|
y=sqrt(4-x^2)
|
y=\sqrt{4-x^{2}}
|
domain of f(x)=ln((x+1)/(x+2))
|
domain\:f(x)=\ln(\frac{x+1}{x+2})
|
parity f(x)= 1/(x+3)
|
parity\:f(x)=\frac{1}{x+3}
|
domain of 1/2 sqrt((x-3))
|
domain\:\frac{1}{2}\sqrt{(x-3)}
|
asymptotes of f(x)=(-3x+3)/(2x+5)
|
asymptotes\:f(x)=\frac{-3x+3}{2x+5}
|
parity f(x)=csc^3(5x^2+1)
|
parity\:f(x)=\csc^{3}(5x^{2}+1)
|
inflection points of x^2-5x+1
|
inflection\:points\:x^{2}-5x+1
|
domain of ln(-x)
|
domain\:\ln(-x)
|
amplitude of f(x)=5sin(x-(5pi)/6)
|
amplitude\:f(x)=5\sin(x-\frac{5\pi}{6})
|
slope intercept of 5
|
slope\:intercept\:5
|
asymptotes of f(x)= 5/(x-3)
|
asymptotes\:f(x)=\frac{5}{x-3}
|
periodicity of sin(2x)
|
periodicity\:\sin(2x)
|
domain of f(x)=(x^2-9)/(x^2-4)
|
domain\:f(x)=\frac{x^{2}-9}{x^{2}-4}
|
domain of (9x)/(x^2-1)
|
domain\:\frac{9x}{x^{2}-1}
|
extreme points of 5x^6-3x^5
|
extreme\:points\:5x^{6}-3x^{5}
|
domain of f(x)=sqrt((2x-1)/(3x+4))
|
domain\:f(x)=\sqrt{\frac{2x-1}{3x+4}}
|
inverse of 1/(x^{1/2)}
|
inverse\:\frac{1}{x^{\frac{1}{2}}}
|
domain of 1-sqrt(x)
|
domain\:1-\sqrt{x}
|
range of f(x)=tan^{-1}(x)
|
range\:f(x)=\tan^{-1}(x)
|
slope of y=-2/5 x-7
|
slope\:y=-\frac{2}{5}x-7
|
extreme points of f(x)=3x^2-6x-9
|
extreme\:points\:f(x)=3x^{2}-6x-9
|
domain of f(x)= x/(sqrt(x^2+2))
|
domain\:f(x)=\frac{x}{\sqrt{x^{2}+2}}
|
intercepts of f(x)= 6/(x^2+5x-7)
|
intercepts\:f(x)=\frac{6}{x^{2}+5x-7}
|
domain of f(x)=(sqrt(x+1))/(x-4)
|
domain\:f(x)=\frac{\sqrt{x+1}}{x-4}
|
range of b^x
|
range\:b^{x}
|
intercepts of f(x)=x+y=9
|
intercepts\:f(x)=x+y=9
|
inverse of 2^{x-1}+1
|
inverse\:2^{x-1}+1
|
extreme points of f(x)=x^2-2x
|
extreme\:points\:f(x)=x^{2}-2x
|
slope of Y=9x+3
|
slope\:Y=9x+3
|
extreme points of f(x)=(x^2+5x+4)
|
extreme\:points\:f(x)=(x^{2}+5x+4)
|
inverse of f(x)=sqrt(x+12)
|
inverse\:f(x)=\sqrt{x+12}
|
asymptotes of f(x)=(x^4-3x+5)/(2x^4-3)
|
asymptotes\:f(x)=\frac{x^{4}-3x+5}{2x^{4}-3}
|
asymptotes of f(x)=(x^2-4)/(x^2+x-6)
|
asymptotes\:f(x)=\frac{x^{2}-4}{x^{2}+x-6}
|
range of y=sqrt(2x-8)
|
range\:y=\sqrt{2x-8}
|
range of f(x)=(x^3)/(x^2-1)
|
range\:f(x)=\frac{x^{3}}{x^{2}-1}
|
inverse of f(x)= 3/x+5
|
inverse\:f(x)=\frac{3}{x}+5
|
x^2+4x+1
|
x^{2}+4x+1
|
critical points of (x^2+7)/(x-4)
|
critical\:points\:\frac{x^{2}+7}{x-4}
|
inverse of y=9^x
|
inverse\:y=9^{x}
|
domain of f(x)=9.5x^2-x+4.3
|
domain\:f(x)=9.5x^{2}-x+4.3
|
inverse of 16x^2-25
|
inverse\:16x^{2}-25
|
inverse of f(x)= 1/x+8
|
inverse\:f(x)=\frac{1}{x}+8
|
asymptotes of f(x)=(x-3)/(x^2-4x+3)
|
asymptotes\:f(x)=\frac{x-3}{x^{2}-4x+3}
|
inverse of y=15(0.9)^{x/4}
|
inverse\:y=15(0.9)^{\frac{x}{4}}
|
inverse of f(x)= 2/(-x+3)
|
inverse\:f(x)=\frac{2}{-x+3}
|
inverse of f(x)=30(x+20)^2-4
|
inverse\:f(x)=30(x+20)^{2}-4
|
intercepts of x^2+8x-80
|
intercepts\:x^{2}+8x-80
|
inverse of f(x)=-sqrt(x+6)
|
inverse\:f(x)=-\sqrt{x+6}
|
monotone intervals (4t)/(t^2+4)
|
monotone\:intervals\:\frac{4t}{t^{2}+4}
|
symmetry (x-7)^2
|
symmetry\:(x-7)^{2}
|
inverse of f(x)=sqrt(7x+4)
|
inverse\:f(x)=\sqrt{7x+4}
|
inflection points of f(x)=3x^4-4x^3-5x^2
|
inflection\:points\:f(x)=3x^{4}-4x^{3}-5x^{2}
|
parity f(x)= x/(x^2-7)
|
parity\:f(x)=\frac{x}{x^{2}-7}
|
domain of x/(sqrt(x^2-4))
|
domain\:\frac{x}{\sqrt{x^{2}-4}}
|
inverse of f(x)= 1/4 x-5
|
inverse\:f(x)=\frac{1}{4}x-5
|
inverse of f(x)=2\sqrt[3]{2x+3}+5
|
inverse\:f(x)=2\sqrt[3]{2x+3}+5
|
inverse of f(x)=log_{4}(x)+10
|
inverse\:f(x)=\log_{4}(x)+10
|
range of x^3-2x^2+1/2
|
range\:x^{3}-2x^{2}+\frac{1}{2}
|
inverse of 3/(4x-1)
|
inverse\:\frac{3}{4x-1}
|
inverse of f(x)=\sqrt[14]{x}
|
inverse\:f(x)=\sqrt[14]{x}
|
domain of f(x)=e^{x^2}
|
domain\:f(x)=e^{x^{2}}
|
inverse of f(x)=x^2-36x-160
|
inverse\:f(x)=x^{2}-36x-160
|
-x^2
|
-x^{2}
|
slope intercept of 5x+4y=-12
|
slope\:intercept\:5x+4y=-12
|
domain of f(x)=6x+7
|
domain\:f(x)=6x+7
|
midpoint (5,2)(11,14)
|
midpoint\:(5,2)(11,14)
|
domain of 1/(x^2+1)
|
domain\:\frac{1}{x^{2}+1}
|
x^2-2x+4
|
x^{2}-2x+4
|