extreme points of f(x)=x^4
|
extreme\:points\:f(x)=x^{4}
|
parity x^{sin(x)}
|
parity\:x^{\sin(x)}
|
extreme points of f(x)=3000-10x^2+1/3x^3
|
extreme\:points\:f(x)=3000-10x^{2}+1/3x^{3}
|
inverse of f(x)= 8/(5x+7)
|
inverse\:f(x)=\frac{8}{5x+7}
|
line (1,5)(1,7)
|
line\:(1,5)(1,7)
|
domain of f(x)=sqrt(x-7)
|
domain\:f(x)=\sqrt{x-7}
|
range of-2(x+3)^2-1
|
range\:-2(x+3)^{2}-1
|
y=2x-7
|
y=2x-7
|
inverse of ln(2)
|
inverse\:\ln(2)
|
asymptotes of e^x(x^3-4x^2+7x-6)
|
asymptotes\:e^{x}(x^{3}-4x^{2}+7x-6)
|
inverse of-x^2+1
|
inverse\:-x^{2}+1
|
slope of x+2y=2
|
slope\:x+2y=2
|
line (0,-3),(2,1)
|
line\:(0,-3),(2,1)
|
critical points of x^2+4x-4
|
critical\:points\:x^{2}+4x-4
|
inverse of (x-1)/(x+3)
|
inverse\:\frac{x-1}{x+3}
|
domain of f(x)=sqrt(4x+12)
|
domain\:f(x)=\sqrt{4x+12}
|
inflection points of f(x)=-5/(x-2)
|
inflection\:points\:f(x)=-\frac{5}{x-2}
|
parity f(x)=(sin(x))/(x^2)+x/(x^2-9)
|
parity\:f(x)=\frac{\sin(x)}{x^{2}}+\frac{x}{x^{2}-9}
|
domain of sqrt(\sqrt{x)}
|
domain\:\sqrt{\sqrt{x}}
|
asymptotes of (x^2-81)/(x^2-13x+36)
|
asymptotes\:\frac{x^{2}-81}{x^{2}-13x+36}
|
inflection points of f(x)=-2x^5+10x^4
|
inflection\:points\:f(x)=-2x^{5}+10x^{4}
|
extreme points of f(x)=x^2e^{-0.1x}
|
extreme\:points\:f(x)=x^{2}e^{-0.1x}
|
range of (-3-sqrt(4x+25))/2
|
range\:\frac{-3-\sqrt{4x+25}}{2}
|
intercepts of f(x)=-3x^2-10x-8
|
intercepts\:f(x)=-3x^{2}-10x-8
|
asymptotes of-20x^2+20000x-1800000
|
asymptotes\:-20x^{2}+20000x-1800000
|
midpoint (0,4)(-5, 1/2)
|
midpoint\:(0,4)(-5,\frac{1}{2})
|
domain of 2x-7
|
domain\:2x-7
|
asymptotes of f(x)=(2x-3)/(x+4)
|
asymptotes\:f(x)=\frac{2x-3}{x+4}
|
range of \sqrt[3]{x}+4
|
range\:\sqrt[3]{x}+4
|
parallel y=4x-2
|
parallel\:y=4x-2
|
range of f(x)=sqrt(x-1)+4/(x^2-4)
|
range\:f(x)=\sqrt{x-1}+\frac{4}{x^{2}-4}
|
critical points of 1/(x^2+2x+1)
|
critical\:points\:\frac{1}{x^{2}+2x+1}
|
domain of f(r)=-1/r
|
domain\:f(r)=-\frac{1}{r}
|
midpoint (6,4)(10,2)
|
midpoint\:(6,4)(10,2)
|
domain of f(x)=((x-2))/(x-(4/x))
|
domain\:f(x)=\frac{(x-2)}{x-(\frac{4}{x})}
|
domain of y=2^x
|
domain\:y=2^{x}
|
inverse of f(x)=x^{1/2}
|
inverse\:f(x)=x^{\frac{1}{2}}
|
inverse of f(x)=((4x-9))/((x-4))
|
inverse\:f(x)=\frac{(4x-9)}{(x-4)}
|
inverse of 3x-4
|
inverse\:3x-4
|
domain of 1/x+1
|
domain\:\frac{1}{x}+1
|
intercepts of f(x)=x-4y-11=0
|
intercepts\:f(x)=x-4y-11=0
|
perpendicular x=6,\at (8,-5)
|
perpendicular\:x=6,\at\:(8,-5)
|
asymptotes of y=(x^2+4x)/(x+4)
|
asymptotes\:y=\frac{x^{2}+4x}{x+4}
|
domain of f(x)=(3x)/(x^2+x-2)
|
domain\:f(x)=\frac{3x}{x^{2}+x-2}
|
domain of f(x)= 1/(2-x)
|
domain\:f(x)=\frac{1}{2-x}
|
inverse of f(x)= 1/5 x^2-1
|
inverse\:f(x)=\frac{1}{5}x^{2}-1
|
inverse of f(x)= 3/(x+2)
|
inverse\:f(x)=\frac{3}{x+2}
|
domain of f(x)= 1/(10sqrt(2x+12)-20)
|
domain\:f(x)=\frac{1}{10\sqrt{2x+12}-20}
|
extreme points of f(x)=x^3-12x+20
|
extreme\:points\:f(x)=x^{3}-12x+20
|
inverse of-3/4
|
inverse\:-\frac{3}{4}
|
slope of = 3/7
|
slope\:=\frac{3}{7}
|
domain of sqrt(2x-5)
|
domain\:\sqrt{2x-5}
|
asymptotes of (e^x)/(x^2)
|
asymptotes\:\frac{e^{x}}{x^{2}}
|
extreme points of f(x)=x^3-27x+4
|
extreme\:points\:f(x)=x^{3}-27x+4
|
parity y=24x+1/((1+x)^{60)}
|
parity\:y=24x+\frac{1}{(1+x)^{60}}
|
domain of f(x)=(2x)/(x^2-36)
|
domain\:f(x)=\frac{2x}{x^{2}-36}
|
asymptotes of f(x)=3^x-4
|
asymptotes\:f(x)=3^{x}-4
|
slope intercept of-20-9x=4y
|
slope\:intercept\:-20-9x=4y
|
asymptotes of f(x)=(4x+8)/(x+3)
|
asymptotes\:f(x)=\frac{4x+8}{x+3}
|
perpendicular y= 3/4 x+5,\at (3,-3)
|
perpendicular\:y=\frac{3}{4}x+5,\at\:(3,-3)
|
extreme points of f(x)=sqrt(25-x^2)
|
extreme\:points\:f(x)=\sqrt{25-x^{2}}
|
distance (5,6)(4,1)
|
distance\:(5,6)(4,1)
|
range of f(x)=4-sqrt(x)
|
range\:f(x)=4-\sqrt{x}
|
extreme points of f(x)=x^3+5x-2
|
extreme\:points\:f(x)=x^{3}+5x-2
|
domain of y=f(x)=ln(x+sqrt(4+x^2))
|
domain\:y=f(x)=\ln(x+\sqrt{4+x^{2}})
|
extreme points of f(x)=x(e^{((-x^2))/8})
|
extreme\:points\:f(x)=x(e^{\frac{(-x^{2})}{8}})
|
range of f(x)=3sqrt(x)-4
|
range\:f(x)=3\sqrt{x}-4
|
critical points of f(x)=x^8(x-3)^7
|
critical\:points\:f(x)=x^{8}(x-3)^{7}
|
range of (sqrt(x-1))/(\sqrt[3]{x^2-16)}
|
range\:\frac{\sqrt{x-1}}{\sqrt[3]{x^{2}-16}}
|
intercepts of f(x)=3(x+2)^2-12=0
|
intercepts\:f(x)=3(x+2)^{2}-12=0
|
extreme points of f(x)=2x^3-24x-4
|
extreme\:points\:f(x)=2x^{3}-24x-4
|
inverse of f(x)=(4+x)/(2-x)
|
inverse\:f(x)=\frac{4+x}{2-x}
|
domain of f(x)=(1/2)^x
|
domain\:f(x)=(\frac{1}{2})^{x}
|
inverse of h(x)=\sqrt[3]{x}-3
|
inverse\:h(x)=\sqrt[3]{x}-3
|
inverse of f(x)=12
|
inverse\:f(x)=12
|
slope of 5x+4y=1
|
slope\:5x+4y=1
|
domain of-(7x)/(x-6)
|
domain\:-\frac{7x}{x-6}
|
domain of 2/(x+3)
|
domain\:\frac{2}{x+3}
|
inverse of f(x)=(x+20)/(x-18)
|
inverse\:f(x)=\frac{x+20}{x-18}
|
slope intercept of x+4y=20
|
slope\:intercept\:x+4y=20
|
inverse of f(x)=(x+1)^3+2
|
inverse\:f(x)=(x+1)^{3}+2
|
slope intercept of x-2y=11
|
slope\:intercept\:x-2y=11
|
global extreme points of f(x)=2-x
|
global\:extreme\:points\:f(x)=2-x
|
domain of f(x)=ln(-3x+x^2)
|
domain\:f(x)=\ln(-3x+x^{2})
|
domain of h(x)=sqrt(3x-12)
|
domain\:h(x)=\sqrt{3x-12}
|
intercepts of f(x)=(x^2-4)/(2x-4)
|
intercepts\:f(x)=\frac{x^{2}-4}{2x-4}
|
inverse of f(x)=sqrt(8x+4)
|
inverse\:f(x)=\sqrt{8x+4}
|
asymptotes of f(x)=(2x^2+x-18)/(x^2-9)
|
asymptotes\:f(x)=\frac{2x^{2}+x-18}{x^{2}-9}
|
domain of f(x)= x/(1-ln(x-6))
|
domain\:f(x)=\frac{x}{1-\ln(x-6)}
|
monotone intervals (3x)/(x^2-4)
|
monotone\:intervals\:\frac{3x}{x^{2}-4}
|
domain of f(x)=(-1)/(2sqrt(3-x))
|
domain\:f(x)=\frac{-1}{2\sqrt{3-x}}
|
amplitude of f(x)=2sin(x)
|
amplitude\:f(x)=2\sin(x)
|
inverse of f(x)=8x^3
|
inverse\:f(x)=8x^{3}
|
domain of f(x)=(-3x+7)/(7x-2)
|
domain\:f(x)=\frac{-3x+7}{7x-2}
|
slope intercept of 3x+2y=-4
|
slope\:intercept\:3x+2y=-4
|
domain of log_{2x+3}(x^2+3x-4)
|
domain\:\log_{2x+3}(x^{2}+3x-4)
|
inverse of f(x)=y=3(x+2)^2-6
|
inverse\:f(x)=y=3(x+2)^{2}-6
|
perpendicular 5x+6y=-36
|
perpendicular\:5x+6y=-36
|
range of x^2-4x-12
|
range\:x^{2}-4x-12
|
line m=-3,\at (2,-2)
|
line\:m=-3,\at\:(2,-2)
|