range of x^2-5
|
range\:x^{2}-5
|
inverse of f(x)=2.5t+11.5
|
inverse\:f(x)=2.5t+11.5
|
intercepts of f(x)=x^3+x^2-20x
|
intercepts\:f(x)=x^{3}+x^{2}-20x
|
intercepts of f(x)=(7/6)^x
|
intercepts\:f(x)=(\frac{7}{6})^{x}
|
extreme points of f(x)=x^3+3x^2+3x-3
|
extreme\:points\:f(x)=x^{3}+3x^{2}+3x-3
|
intercepts of f(x)=x^3-x^2+x-1
|
intercepts\:f(x)=x^{3}-x^{2}+x-1
|
line (1,-3)m= 6/5
|
line\:(1,-3)m=\frac{6}{5}
|
domain of f(x)=-sqrt(x-2)
|
domain\:f(x)=-\sqrt{x-2}
|
domain of f(x)= x/(x-3)
|
domain\:f(x)=\frac{x}{x-3}
|
domain of 1/((x-2)(x+5))
|
domain\:\frac{1}{(x-2)(x+5)}
|
domain of f(x)= 1/(sqrt(x^2-2x))
|
domain\:f(x)=\frac{1}{\sqrt{x^{2}-2x}}
|
asymptotes of f(x)=(x^2-x-2)/(x-2)
|
asymptotes\:f(x)=\frac{x^{2}-x-2}{x-2}
|
range of 3/4 x+7
|
range\:\frac{3}{4}x+7
|
inverse of y=(-3x-7)/(x-1)
|
inverse\:y=(-3x-7)/(x-1)
|
line (-1,-5)(2,1)
|
line\:(-1,-5)(2,1)
|
inverse of f(x)=sqrt(-2x-2)+6
|
inverse\:f(x)=\sqrt{-2x-2}+6
|
domain of sqrt(3x+15)
|
domain\:\sqrt{3x+15}
|
domain of 6/(1-e^x)
|
domain\:\frac{6}{1-e^{x}}
|
inverse of f(x)=(1/4 x+6)^3
|
inverse\:f(x)=(\frac{1}{4}x+6)^{3}
|
domain of f(x)=sqrt((9-x)/(x+4))
|
domain\:f(x)=\sqrt{\frac{9-x}{x+4}}
|
domain of f(x)= 1/(3-x)
|
domain\:f(x)=\frac{1}{3-x}
|
inverse of f(x)=x^2+3,x<= 0
|
inverse\:f(x)=x^{2}+3,x\le\:0
|
asymptotes of f(x)=(x^2+6x-16)/(x^2-4)
|
asymptotes\:f(x)=\frac{x^{2}+6x-16}{x^{2}-4}
|
inverse of x^2-4x+8
|
inverse\:x^{2}-4x+8
|
asymptotes of f(x)=(7x^2+16)/(x^2-16)
|
asymptotes\:f(x)=\frac{7x^{2}+16}{x^{2}-16}
|
midpoint (8,10)(-4,2)
|
midpoint\:(8,10)(-4,2)
|
domain of 4sin(x)
|
domain\:4\sin(x)
|
inverse of f(x)=4-5x
|
inverse\:f(x)=4-5x
|
domain of x^2+4x+4
|
domain\:x^{2}+4x+4
|
inverse of y=1-x/7
|
inverse\:y=1-\frac{x}{7}
|
periodicity of y=sin(x-(pi)/4)
|
periodicity\:y=\sin(x-\frac{\pi}{4})
|
domain of sqrt(x)
|
domain\:\sqrt{x}
|
asymptotes of f(x)=-2(x-1)^3(x+2)^2
|
asymptotes\:f(x)=-2(x-1)^{3}(x+2)^{2}
|
range of f(x)=(2x+3)/(x+1)
|
range\:f(x)=\frac{2x+3}{x+1}
|
inverse of f(x)=(-3-4x)/(2+3x)
|
inverse\:f(x)=\frac{-3-4x}{2+3x}
|
parity arcsin(x)
|
parity\:\arcsin(x)
|
domain of f(x)=(sqrt(x-4))/(2x-16)
|
domain\:f(x)=\frac{\sqrt{x-4}}{2x-16}
|
intercepts of f(x)=y=12x-4
|
intercepts\:f(x)=y=12x-4
|
midpoint (5,3)\land (1,-1)
|
midpoint\:(5,3)\land\:(1,-1)
|
asymptotes of f(x)=((x+3))/(x^2-9)
|
asymptotes\:f(x)=\frac{(x+3)}{x^{2}-9}
|
inverse of f(x)=2x-x^2
|
inverse\:f(x)=2x-x^{2}
|
critical points of 2-x^2
|
critical\:points\:2-x^{2}
|
domain of f(x)=(\sqrt[3]{x-9})/(x^3-9)
|
domain\:f(x)=\frac{\sqrt[3]{x-9}}{x^{3}-9}
|
inverse of f(x)=3x(2-x)
|
inverse\:f(x)=3x(2-x)
|
range of f(x)= 1/(sqrt(x))
|
range\:f(x)=\frac{1}{\sqrt{x}}
|
ln(x)
|
\ln(x)
|
inverse of e^{2t}
|
inverse\:e^{2t}
|
symmetry x^2-y+6=0
|
symmetry\:x^{2}-y+6=0
|
inverse of y=ln(x+1)
|
inverse\:y=\ln(x+1)
|
parallel-8x-3y=-8
|
parallel\:-8x-3y=-8
|
domain of f(x)=-4-3x^2
|
domain\:f(x)=-4-3x^{2}
|
domain of f(x)=sqrt(11-x)
|
domain\:f(x)=\sqrt{11-x}
|
inverse of f(x)=y=7x^2-7
|
inverse\:f(x)=y=7x^{2}-7
|
domain of x^2+4x
|
domain\:x^{2}+4x
|
domain of f(x)=|3x-1|
|
domain\:f(x)=|3x-1|
|
asymptotes of f(x)=(9x^2+x-6)/(x^2+x-2)
|
asymptotes\:f(x)=\frac{9x^{2}+x-6}{x^{2}+x-2}
|
asymptotes of 10^x
|
asymptotes\:10^{x}
|
intercepts of 2x^2-x-1
|
intercepts\:2x^{2}-x-1
|
inverse of f(x)=(6x-1)/(2x+5)
|
inverse\:f(x)=\frac{6x-1}{2x+5}
|
slope of 3x-2y+5=0
|
slope\:3x-2y+5=0
|
domain of (2x-2)/(x+2)
|
domain\:\frac{2x-2}{x+2}
|
domain of f(x)=sqrt(3x-x^3)
|
domain\:f(x)=\sqrt{3x-x^{3}}
|
perpendicular y=5x-5
|
perpendicular\:y=5x-5
|
extreme points of f(x)= 2/(x+5)
|
extreme\:points\:f(x)=\frac{2}{x+5}
|
critical points of 1/6 x^4+2x^3+9x^2
|
critical\:points\:\frac{1}{6}x^{4}+2x^{3}+9x^{2}
|
domain of (x-2)/(1-3x)
|
domain\:\frac{x-2}{1-3x}
|
inverse of f(x)=(x-1)^2-1
|
inverse\:f(x)=(x-1)^{2}-1
|
inflection points of e^{3x}(8-x)
|
inflection\:points\:e^{3x}(8-x)
|
parity f(x)=-3x
|
parity\:f(x)=-3x
|
midpoint (-1,5)(4,-3)
|
midpoint\:(-1,5)(4,-3)
|
range of 4x^2-x+17
|
range\:4x^{2}-x+17
|
inflection points of 3x^3-36x-5
|
inflection\:points\:3x^{3}-36x-5
|
range of f(x)=log_{10}(1/x)
|
range\:f(x)=\log_{10}(\frac{1}{x})
|
monotone intervals-2x^2+2x
|
monotone\:intervals\:-2x^{2}+2x
|
monotone intervals (sqrt(1-x^2))/(2x+1)
|
monotone\:intervals\:\frac{\sqrt{1-x^{2}}}{2x+1}
|
inflection points of x^3+8
|
inflection\:points\:x^{3}+8
|
perpendicular x=1
|
perpendicular\:x=1
|
range of f(x)=sqrt(3x+1)
|
range\:f(x)=\sqrt{3x+1}
|
parity f(x)=-x+2
|
parity\:f(x)=-x+2
|
critical points of f(x)=(x+9)/(x+1)
|
critical\:points\:f(x)=\frac{x+9}{x+1}
|
asymptotes of 1/(x^2-1)
|
asymptotes\:\frac{1}{x^{2}-1}
|
domain of f(x)= 1/(sqrt(x-7))
|
domain\:f(x)=\frac{1}{\sqrt{x-7}}
|
domain of f(x)=x-x^2
|
domain\:f(x)=x-x^{2}
|
inverse of f(x)=5(x-2)
|
inverse\:f(x)=5(x-2)
|
y=|x-3|+2
|
y=\left|x-3\right|+2
|
intercepts of f(x)=x^2+8x+16
|
intercepts\:f(x)=x^{2}+8x+16
|
inverse of g(x)=(3x-2)/2
|
inverse\:g(x)=\frac{3x-2}{2}
|
slope of 8x-7y=11
|
slope\:8x-7y=11
|
domain of x-3-sqrt(5x+1)
|
domain\:x-3-\sqrt{5x+1}
|
intercepts of y=-1/4 x+5
|
intercepts\:y=-\frac{1}{4}x+5
|
intercepts of (x^2-4)/(3x-6)
|
intercepts\:\frac{x^{2}-4}{3x-6}
|
midpoint (4,-8)(-4,2)
|
midpoint\:(4,-8)(-4,2)
|
domain of f(x)=sqrt(-21x+42)
|
domain\:f(x)=\sqrt{-21x+42}
|
range of 2x^2+x-14
|
range\:2x^{2}+x-14
|
critical points of f(x)=4x^{1/3}-x^{4/3}
|
critical\:points\:f(x)=4x^{\frac{1}{3}}-x^{\frac{4}{3}}
|
inverse of f(x)=2x^5
|
inverse\:f(x)=2x^{5}
|
inverse of f(x)=sqrt(x+3)-9
|
inverse\:f(x)=\sqrt{x+3}-9
|
asymptotes of f(x)=(x-3)/(x+3)
|
asymptotes\:f(x)=\frac{x-3}{x+3}
|
inflection points of (X^4)/((1+X)^3)
|
inflection\:points\:\frac{X^{4}}{(1+X)^{3}}
|
inverse of f(x)=log_{3}(9x-5)
|
inverse\:f(x)=\log_{3}(9x-5)
|