inverse of f(x)=((3x+1))/((x-2))
|
inverse\:f(x)=\frac{(3x+1)}{(x-2)}
|
domain of f(x)=2^{x-5}-11
|
domain\:f(x)=2^{x-5}-11
|
domain of f(x)=-sqrt(x+5)-3
|
domain\:f(x)=-\sqrt{x+5}-3
|
range of (x-4)/(x+4)
|
range\:\frac{x-4}{x+4}
|
y=x^2+2x-3
|
y=x^{2}+2x-3
|
line (-3,2)(2,-3)
|
line\:(-3,2)(2,-3)
|
inverse of f(x)=-3x+4
|
inverse\:f(x)=-3x+4
|
inverse of f(x)=x^2-4,x<= 0
|
inverse\:f(x)=x^{2}-4,x\le\:0
|
parity f(x)=11101000011
|
parity\:f(x)=11101000011
|
intercepts of f(x)=(6/5)^{-x}
|
intercepts\:f(x)=(\frac{6}{5})^{-x}
|
domain of f(x)=ln(x+5)
|
domain\:f(x)=\ln(x+5)
|
intercepts of (x-2)/(x^2+x-6)
|
intercepts\:\frac{x-2}{x^{2}+x-6}
|
inflection points of f(x)=e^{-2.5x^2}
|
inflection\:points\:f(x)=e^{-2.5x^{2}}
|
critical points of 3x^2+2x+1
|
critical\:points\:3x^{2}+2x+1
|
inverse of (-x)/(2x-5)
|
inverse\:\frac{-x}{2x-5}
|
inverse of f(x)=(x+1)^2+2
|
inverse\:f(x)=(x+1)^{2}+2
|
inverse of (x-6)/(-3x)
|
inverse\:\frac{x-6}{-3x}
|
range of sin(2)(x-(pi)/2)+1
|
range\:\sin(2)(x-\frac{\pi}{2})+1
|
critical points of f(x)=(x^3)/3-4x
|
critical\:points\:f(x)=\frac{x^{3}}{3}-4x
|
inverse of f(x)=((x+3))/4
|
inverse\:f(x)=\frac{(x+3)}{4}
|
asymptotes of f(x)=y= 3/(x+4)+2
|
asymptotes\:f(x)=y=\frac{3}{x+4}+2
|
intercepts of f(y)=x-3y=6
|
intercepts\:f(y)=x-3y=6
|
midpoint (-1,1)(-4,-2)
|
midpoint\:(-1,1)(-4,-2)
|
extreme points of 5sin(|x|)
|
extreme\:points\:5\sin(|x|)
|
domain of ((1-3x)/(5+x))
|
domain\:(\frac{1-3x}{5+x})
|
vertex f(x)=y=-x^2+4x+1
|
vertex\:f(x)=y=-x^{2}+4x+1
|
inflection points of f(x)=-x^2+9
|
inflection\:points\:f(x)=-x^{2}+9
|
domain of (sqrt(x-5))^2
|
domain\:(\sqrt{x-5})^{2}
|
extreme points of f(x)=x+e^{-3x},[-2,2]
|
extreme\:points\:f(x)=x+e^{-3x},[-2,2]
|
range of f(x)=-(x+1)(x-2)(x-3)
|
range\:f(x)=-(x+1)(x-2)(x-3)
|
range of (\sqrt[3]{1/x-2})/3
|
range\:\frac{\sqrt[3]{\frac{1}{x}-2}}{3}
|
parity f(x)=8x
|
parity\:f(x)=8x
|
inverse of (x+3)^2
|
inverse\:(x+3)^{2}
|
inflection points of f(x)=(16)/(x^2+12)
|
inflection\:points\:f(x)=\frac{16}{x^{2}+12}
|
midpoint (-2,-7)(2.5,-1.5)
|
midpoint\:(-2,-7)(2.5,-1.5)
|
asymptotes of f(x)=(x^2-2x)/(2x^2+2x-12)
|
asymptotes\:f(x)=\frac{x^{2}-2x}{2x^{2}+2x-12}
|
range of (-5)/(sqrt(1-x))
|
range\:\frac{-5}{\sqrt{1-x}}
|
range of f(x)= 3/(x^2)
|
range\:f(x)=\frac{3}{x^{2}}
|
inverse of 2x^2(sqrt(2)+1)
|
inverse\:2x^{2}(\sqrt{2}+1)
|
slope of x= 3/5
|
slope\:x=\frac{3}{5}
|
range of f(x)=sqrt(2x-8)
|
range\:f(x)=\sqrt{2x-8}
|
intercepts of f(x)=x+2y=5
|
intercepts\:f(x)=x+2y=5
|
asymptotes of sin(x)+cos^2(x)
|
asymptotes\:\sin(x)+\cos^{2}(x)
|
shift 3+2sin(5x+(pi)/4)
|
shift\:3+2\sin(5x+\frac{\pi}{4})
|
inflection points of (ln(x-2))/((x-2)^2)
|
inflection\:points\:\frac{\ln(x-2)}{(x-2)^{2}}
|
vertex f(x)=y=x^2-8x+3
|
vertex\:f(x)=y=x^{2}-8x+3
|
midpoint (6,6)(0,0)
|
midpoint\:(6,6)(0,0)
|
inverse of f(x)=x^2+6x
|
inverse\:f(x)=x^{2}+6x
|
inflection points of x/(x^2+2)
|
inflection\:points\:\frac{x}{x^{2}+2}
|
critical points of 3x^2
|
critical\:points\:3x^{2}
|
domain of f(x)=3^x+5
|
domain\:f(x)=3^{x}+5
|
distance (-2,-2)(-4,3)
|
distance\:(-2,-2)(-4,3)
|
symmetry y=-2x^3
|
symmetry\:y=-2x^{3}
|
symmetry (x^2)/9+(y^2)/(25)=1
|
symmetry\:\frac{x^{2}}{9}+\frac{y^{2}}{25}=1
|
inverse of f(x)=5-2*x^3
|
inverse\:f(x)=5-2\cdot\:x^{3}
|
inverse of g(x)=2x-4
|
inverse\:g(x)=2x-4
|
slope intercept of y=2x-7
|
slope\:intercept\:y=2x-7
|
inverse of f(x)=((-2))/(x+2)
|
inverse\:f(x)=\frac{(-2)}{x+2}
|
domain of ln(3-x)
|
domain\:\ln(3-x)
|
f(x)=2x+5
|
f(x)=2x+5
|
slope of f(x)= 3/4 x-5
|
slope\:f(x)=\frac{3}{4}x-5
|
inverse of (7-2x)/(3x)
|
inverse\:\frac{7-2x}{3x}
|
domain of h(x)=sqrt(x-5)
|
domain\:h(x)=\sqrt{x-5}
|
slope of 4(4)+(-8)=9
|
slope\:4(4)+(-8)=9
|
asymptotes of f(x)=(3x-3)/(-x+2)
|
asymptotes\:f(x)=\frac{3x-3}{-x+2}
|
range of f(x)=x+5x<-5
|
range\:f(x)=x+5x\lt\:-5
|
inflection points of 1/(7x^2+2)
|
inflection\:points\:\frac{1}{7x^{2}+2}
|
symmetry y=3-x^2
|
symmetry\:y=3-x^{2}
|
inverse of f(x)=7+1/5 x
|
inverse\:f(x)=7+\frac{1}{5}x
|
midpoint (-5/2 , 1/2),(-7/2 ,-9/2)
|
midpoint\:(-\frac{5}{2},\frac{1}{2}),(-\frac{7}{2},-\frac{9}{2})
|
domain of f(x)=(2x^2-x-1)/(x^2+9)
|
domain\:f(x)=\frac{2x^{2}-x-1}{x^{2}+9}
|
inverse of f(x)=(16-t)^{1/8}
|
inverse\:f(x)=(16-t)^{\frac{1}{8}}
|
inverse of f(x)=5\sqrt[3]{x}
|
inverse\:f(x)=5\sqrt[3]{x}
|
inverse of f(x)=3^{x+2}
|
inverse\:f(x)=3^{x+2}
|
range of-2/(sqrt(x))
|
range\:-\frac{2}{\sqrt{x}}
|
inverse of f(x)=4(x+2)^3
|
inverse\:f(x)=4(x+2)^{3}
|
asymptotes of h(x)= 1/3 e^{x+2}+2
|
asymptotes\:h(x)=\frac{1}{3}e^{x+2}+2
|
inverse of f(x)=-5/3 x
|
inverse\:f(x)=-\frac{5}{3}x
|
parity y=(tan(-arctan(x^2)+2c))/2
|
parity\:y=\frac{\tan(-\arctan(x^{2})+2c)}{2}
|
asymptotes of 10^{-x}
|
asymptotes\:10^{-x}
|
inverse of f(x)=e^{x-4}
|
inverse\:f(x)=e^{x-4}
|
line (4),(-2)
|
line\:(4),(-2)
|
symmetry-4x=y^2
|
symmetry\:-4x=y^{2}
|
inverse of f(x)=-2x^2
|
inverse\:f(x)=-2x^{2}
|
symmetry (x+3)^2
|
symmetry\:(x+3)^{2}
|
asymptotes of f(x)=(x^2+2x)/(x^3-9x)
|
asymptotes\:f(x)=\frac{x^{2}+2x}{x^{3}-9x}
|
domain of f(x)=(sqrt(x))/(7x^2+6x-1)
|
domain\:f(x)=\frac{\sqrt{x}}{7x^{2}+6x-1}
|
distance (0,-7)(-6,-3)
|
distance\:(0,-7)(-6,-3)
|
domain of f(x)=x^{2/3}
|
domain\:f(x)=x^{\frac{2}{3}}
|
domain of f(x)=sqrt(2x-1)sqrt(3x+2)
|
domain\:f(x)=\sqrt{2x-1}\sqrt{3x+2}
|
inverse of f(x)=((x+7))/(x-5)
|
inverse\:f(x)=\frac{(x+7)}{x-5}
|
symmetry y=x
|
symmetry\:y=x
|
inflection points of f(x)=2x^3-9x^2+27
|
inflection\:points\:f(x)=2x^{3}-9x^{2}+27
|
domain of f(x)=sqrt(-5x^2)
|
domain\:f(x)=\sqrt{-5x^{2}}
|
critical points of f(x)=tan(2x)
|
critical\:points\:f(x)=\tan(2x)
|
domain of f(x)=-x^2+6x-5
|
domain\:f(x)=-x^{2}+6x-5
|
line y=5x
|
line\:y=5x
|
inverse of f(x)=(2x+3)/6
|
inverse\:f(x)=\frac{2x+3}{6}
|
asymptotes of f(x)=((x+1))/(x-2)
|
asymptotes\:f(x)=\frac{(x+1)}{x-2}
|
midpoint (4,8)(2,6)
|
midpoint\:(4,8)(2,6)
|