inverse of f(x)=(-14+x)/6
|
inverse\:f(x)=\frac{-14+x}{6}
|
domain of f(x)=(2x)/(x-6)-x/(x+2)
|
domain\:f(x)=\frac{2x}{x-6}-\frac{x}{x+2}
|
domain of f(x)=((1))/(sqrt(81-x))
|
domain\:f(x)=\frac{(1)}{\sqrt{81-x}}
|
asymptotes of f(x)=(x^2-4)log_{2}(x^2-4)
|
asymptotes\:f(x)=(x^{2}-4)\log_{2}(x^{2}-4)
|
inverse of f(x)=9(x^5+10)-9
|
inverse\:f(x)=9(x^{5}+10)-9
|
inverse of f(x)=(x^7)/3+4
|
inverse\:f(x)=\frac{x^{7}}{3}+4
|
slope intercept of 9x=-3y+3
|
slope\:intercept\:9x=-3y+3
|
asymptotes of f(x)=3^{x+4}
|
asymptotes\:f(x)=3^{x+4}
|
inverse of y= 1/2 sqrt(4-x^2)
|
inverse\:y=\frac{1}{2}\sqrt{4-x^{2}}
|
domain of f(x)= 4/5 sqrt(x-4)+1
|
domain\:f(x)=\frac{4}{5}\sqrt{x-4}+1
|
domain of f(x)=sqrt(8-4x)
|
domain\:f(x)=\sqrt{8-4x}
|
inverse of f(3)
|
inverse\:f(3)
|
domain of f(x)=(x^2+3x-4)/(x(x^2-5))
|
domain\:f(x)=\frac{x^{2}+3x-4}{x(x^{2}-5)}
|
slope intercept of 3x-y=2
|
slope\:intercept\:3x-y=2
|
inverse of f(x)=-sqrt(x+5)
|
inverse\:f(x)=-\sqrt{x+5}
|
range of pi-3arcsin(2x-1)
|
range\:\pi-3\arcsin(2x-1)
|
y=x^2+4x-5
|
y=x^{2}+4x-5
|
parity f(x)=(1-3x^3)/(2x^3-6x+2)
|
parity\:f(x)=\frac{1-3x^{3}}{2x^{3}-6x+2}
|
asymptotes of 3/(x-1)
|
asymptotes\:\frac{3}{x-1}
|
critical points of f(x)=2x^3-3x^2-12x+2
|
critical\:points\:f(x)=2x^{3}-3x^{2}-12x+2
|
range of x^2+x^3
|
range\:x^{2}+x^{3}
|
extreme points of f(x)=x^2+6x+5
|
extreme\:points\:f(x)=x^{2}+6x+5
|
domain of 2x
|
domain\:2x
|
domain of 9/x+12
|
domain\:\frac{9}{x}+12
|
domain of (x^2-x-2)/(x^2-5x+6)
|
domain\:\frac{x^{2}-x-2}{x^{2}-5x+6}
|
line (5,2)(4,1)
|
line\:(5,2)(4,1)
|
slope of y=8x-7
|
slope\:y=8x-7
|
extreme points of f(x)=((e^x-e^{-x}))/2
|
extreme\:points\:f(x)=\frac{(e^{x}-e^{-x})}{2}
|
midpoint (9,6)(3,3)
|
midpoint\:(9,6)(3,3)
|
asymptotes of f(x)=(2x+5)/(x^2-4)
|
asymptotes\:f(x)=\frac{2x+5}{x^{2}-4}
|
domain of f(x)=log_{4}(x-1)-5
|
domain\:f(x)=\log_{4}(x-1)-5
|
inverse of f(x)= 1/4 x+3
|
inverse\:f(x)=\frac{1}{4}x+3
|
perpendicular 5x-6y=4
|
perpendicular\:5x-6y=4
|
domain of f(x)= 6/(sqrt(x^2-16))
|
domain\:f(x)=\frac{6}{\sqrt{x^{2}-16}}
|
midpoint (1,-1)(3,3)
|
midpoint\:(1,-1)(3,3)
|
inverse of f(x)=3+sqrt(2+x)
|
inverse\:f(x)=3+\sqrt{2+x}
|
perpendicular y-7=1(x-1)
|
perpendicular\:y-7=1(x-1)
|
slope of q(x)=5x-((3+5x))/5
|
slope\:q(x)=5x-\frac{(3+5x)}{5}
|
extreme points of f(x)=4x^2+24x+6
|
extreme\:points\:f(x)=4x^{2}+24x+6
|
inverse of f(x)=7(x-8)^3
|
inverse\:f(x)=7(x-8)^{3}
|
domain of f(x)= 1/(x^3)
|
domain\:f(x)=\frac{1}{x^{3}}
|
intercepts of 4/((x-2)^2)
|
intercepts\:\frac{4}{(x-2)^{2}}
|
domain of f(x)=-3x-9
|
domain\:f(x)=-3x-9
|
midpoint (4,-4)(-5,0)
|
midpoint\:(4,-4)(-5,0)
|
domain of f(x)=2^{x+1}
|
domain\:f(x)=2^{x+1}
|
domain of (3x^2-18x+24)/(x^2-4x)
|
domain\:\frac{3x^{2}-18x+24}{x^{2}-4x}
|
domain of f(x)=3^{x-5}+1
|
domain\:f(x)=3^{x-5}+1
|
parity f(x)=x^2+x
|
parity\:f(x)=x^{2}+x
|
inverse of f(x)=((10x+4))/((8x+7))
|
inverse\:f(x)=\frac{(10x+4)}{(8x+7)}
|
inverse of-6cos(7x)
|
inverse\:-6\cos(7x)
|
inverse of y=e^x
|
inverse\:y=e^{x}
|
domain of f(x)= 8/(x+3)
|
domain\:f(x)=\frac{8}{x+3}
|
range of sin(x)
|
range\:\sin(x)
|
inverse of f(x)=((x-4))/(x+4)
|
inverse\:f(x)=\frac{(x-4)}{x+4}
|
symmetry 4x^2-8y^2=5
|
symmetry\:4x^{2}-8y^{2}=5
|
inverse of y=2*log_{7}(3x-39)
|
inverse\:y=2\cdot\:\log_{7}(3x-39)
|
inverse of 1/2 x+1
|
inverse\:\frac{1}{2}x+1
|
inverse of f(x)=\sqrt[3]{(x-2)}+5
|
inverse\:f(x)=\sqrt[3]{(x-2)}+5
|
asymptotes of f(x)=(x^2+10x+24)/(2x+8)
|
asymptotes\:f(x)=\frac{x^{2}+10x+24}{2x+8}
|
domain of f(x)= 3/(x^2+4x-45)
|
domain\:f(x)=\frac{3}{x^{2}+4x-45}
|
y=x^3+1
|
y=x^{3}+1
|
range of 3+3x
|
range\:3+3x
|
periodicity of 2cos(pi x)
|
periodicity\:2\cos(\pi\:x)
|
inflection points of f(x)=x^2-x+5
|
inflection\:points\:f(x)=x^{2}-x+5
|
shift f(x)= 1/2 sin(x+(pi)/4)
|
shift\:f(x)=\frac{1}{2}\sin(x+\frac{\pi}{4})
|
domain of f(x)=-sqrt(3x-12)-5
|
domain\:f(x)=-\sqrt{3x-12}-5
|
line (0,0),(5,10)
|
line\:(0,0),(5,10)
|
distance (8,-5)(1,1)
|
distance\:(8,-5)(1,1)
|
slope of y=4x-7
|
slope\:y=4x-7
|
inverse of f(x)=n^3+2
|
inverse\:f(x)=n^{3}+2
|
sinh(x)
|
\sinh(x)
|
parity f(x)=(x-1)^2
|
parity\:f(x)=(x-1)^{2}
|
critical points of f(x)= x/(x^2+25)
|
critical\:points\:f(x)=\frac{x}{x^{2}+25}
|
intercepts of f(x)=(2x-3)/(x+4)
|
intercepts\:f(x)=\frac{2x-3}{x+4}
|
domain of 4/(4+x)
|
domain\:\frac{4}{4+x}
|
inverse of sqrt(3x)
|
inverse\:\sqrt{3x}
|
parallel 2x+5y=-30
|
parallel\:2x+5y=-30
|
midpoint (1,2)(-3,8)
|
midpoint\:(1,2)(-3,8)
|
range of \sqrt[3]{x-7}
|
range\:\sqrt[3]{x-7}
|
shift f(x)=6cos(1/5 pi x-pi)+4
|
shift\:f(x)=6\cos(\frac{1}{5}\pi\:x-\pi)+4
|
domain of f(x)= 1/(1+sqrt(x))
|
domain\:f(x)=\frac{1}{1+\sqrt{x}}
|
inverse of f(x)=log_{4}(x-11)+3
|
inverse\:f(x)=\log_{4}(x-11)+3
|
inverse of f(x)=2x^2+4=y
|
inverse\:f(x)=2x^{2}+4=y
|
symmetry y=-6x^2
|
symmetry\:y=-6x^{2}
|
range of f(x)=6x+3
|
range\:f(x)=6x+3
|
extreme points of f(x)=x^2e^{10x}
|
extreme\:points\:f(x)=x^{2}e^{10x}
|
domain of f(x)=2sqrt(x+3)-5
|
domain\:f(x)=2\sqrt{x+3}-5
|
slope intercept of 11x-15y=7
|
slope\:intercept\:11x-15y=7
|
domain of f(x)=x^5-5
|
domain\:f(x)=x^{5}-5
|
slope of y+2=6x
|
slope\:y+2=6x
|
domain of f(x)=x^{5/4}
|
domain\:f(x)=x^{\frac{5}{4}}
|
extreme points of (x^2+x+1)/x
|
extreme\:points\:\frac{x^{2}+x+1}{x}
|
inverse of f(x)=2-x^2,x>= 0
|
inverse\:f(x)=2-x^{2},x\ge\:0
|
inverse of f(x)=27(x-1)^3-8
|
inverse\:f(x)=27(x-1)^{3}-8
|
asymptotes of f(x)=-6/(x^2)
|
asymptotes\:f(x)=-\frac{6}{x^{2}}
|
domain of 7/(2x-10)
|
domain\:\frac{7}{2x-10}
|
inverse of f(x)=x^2+8x,x>=-4
|
inverse\:f(x)=x^{2}+8x,x\ge\:-4
|
inverse of 7/(5x+3)
|
inverse\:\frac{7}{5x+3}
|
range of (x^2)/(-2+x)
|
range\:\frac{x^{2}}{-2+x}
|
asymptotes of f(x)= x/(x+8)
|
asymptotes\:f(x)=\frac{x}{x+8}
|