domain of f(x)=x+sqrt(x)+4
|
domain\:f(x)=x+\sqrt{x}+4
|
critical points of y=x^{3/2}-3x^{5/2}
|
critical\:points\:y=x^{\frac{3}{2}}-3x^{\frac{5}{2}}
|
inverse of f(x)=e^{5x}
|
inverse\:f(x)=e^{5x}
|
extreme points of f(x)=x^2+7x+8
|
extreme\:points\:f(x)=x^{2}+7x+8
|
domain of f(x)=-9/(2t^{3/2)}
|
domain\:f(x)=-\frac{9}{2t^{\frac{3}{2}}}
|
domain of sqrt(2(x-3)+10)
|
domain\:\sqrt{2(x-3)+10}
|
domain of sqrt(x^2+2x-15)
|
domain\:\sqrt{x^{2}+2x-15}
|
extreme points of f(x)=x^3-3x^2-72x
|
extreme\:points\:f(x)=x^{3}-3x^{2}-72x
|
critical points of f(x)=x^{9/2}-4x^2
|
critical\:points\:f(x)=x^{\frac{9}{2}}-4x^{2}
|
domain of f(x)=6x^2+4
|
domain\:f(x)=6x^{2}+4
|
inverse of f(x)=4x+12
|
inverse\:f(x)=4x+12
|
intercepts of f(x)=2x^2-3x-2
|
intercepts\:f(x)=2x^{2}-3x-2
|
inverse of 2-3x^2
|
inverse\:2-3x^{2}
|
critical points of (x+8)/(x^2+x+1)
|
critical\:points\:\frac{x+8}{x^{2}+x+1}
|
parity f(x)=3-2x
|
parity\:f(x)=3-2x
|
inverse of f(x)=ln(2t)
|
inverse\:f(x)=\ln(2t)
|
domain of f(x)= 1/(\frac{2){x-5}-2}
|
domain\:f(x)=\frac{1}{\frac{2}{x-5}-2}
|
domain of f(x)=sqrt(log_{1/3)(1-x)}
|
domain\:f(x)=\sqrt{\log_{\frac{1}{3}}(1-x)}
|
domain of 1/(sqrt(|x|+x))
|
domain\:\frac{1}{\sqrt{|x|+x}}
|
inverse of f(x)=x^2-2
|
inverse\:f(x)=x^{2}-2
|
asymptotes of f(x)=(x^2-2)/(x+2)
|
asymptotes\:f(x)=\frac{x^{2}-2}{x+2}
|
domain of f(x)=sqrt((9-x^2)/(x+1))
|
domain\:f(x)=\sqrt{\frac{9-x^{2}}{x+1}}
|
inverse of (x-3)^3+4
|
inverse\:(x-3)^{3}+4
|
domain of f(x)=16x+35
|
domain\:f(x)=16x+35
|
extreme points of f(x)=x^2+3x
|
extreme\:points\:f(x)=x^{2}+3x
|
midpoint (70,60)(4,5)
|
midpoint\:(70,60)(4,5)
|
domain of sqrt((x+4)/(x-2))
|
domain\:\sqrt{\frac{x+4}{x-2}}
|
domain of 1-sqrt(x+2)
|
domain\:1-\sqrt{x+2}
|
critical points of f(x)=x^2
|
critical\:points\:f(x)=x^{2}
|
midpoint (-7,8)(2,2)
|
midpoint\:(-7,8)(2,2)
|
domain of f(x)=sqrt(t-4)
|
domain\:f(x)=\sqrt{t-4}
|
domain of y=sqrt(x-9)
|
domain\:y=\sqrt{x-9}
|
extreme points of f(x)=4x^3-15x^2-18x+7
|
extreme\:points\:f(x)=4x^{3}-15x^{2}-18x+7
|
parity cot(x)cos(x)+csc(x)sin(2)(x)
|
parity\:\cot(x)\cos(x)+\csc(x)\sin(2)(x)
|
extreme points of f(x)=x^4-4x^2+4
|
extreme\:points\:f(x)=x^{4}-4x^{2}+4
|
inverse of f(x)=-3x-2
|
inverse\:f(x)=-3x-2
|
slope intercept of 2x-3y=-6
|
slope\:intercept\:2x-3y=-6
|
inverse of 1+ln(t)
|
inverse\:1+\ln(t)
|
domain of g(x)=sqrt(x^2-4x-21)
|
domain\:g(x)=\sqrt{x^{2}-4x-21}
|
range of \sqrt[4]{x}
|
range\:\sqrt[4]{x}
|
intercepts of f(x)=-19-10x-x^2
|
intercepts\:f(x)=-19-10x-x^{2}
|
inverse of f(x)=-5+1/3 x
|
inverse\:f(x)=-5+\frac{1}{3}x
|
perpendicular x+2y=14
|
perpendicular\:x+2y=14
|
domain of ln(4t)
|
domain\:\ln(4t)
|
domain of f(x)=-x^2+6x+4
|
domain\:f(x)=-x^{2}+6x+4
|
domain of (x+5)^2
|
domain\:(x+5)^{2}
|
slope intercept of 2x+7y-14=0
|
slope\:intercept\:2x+7y-14=0
|
range of f(x)=sqrt(x+12)
|
range\:f(x)=\sqrt{x+12}
|
domain of y=sqrt(2x-8)
|
domain\:y=\sqrt{2x-8}
|
domain of f(x)=3x-4
|
domain\:f(x)=3x-4
|
range of ln(x+3)
|
range\:\ln(x+3)
|
range of 11-sqrt(7x-5)
|
range\:11-\sqrt{7x-5}
|
asymptotes of f(x)= 3/(x+4)
|
asymptotes\:f(x)=\frac{3}{x+4}
|
inflection points of f(x)=x+cos(2x)
|
inflection\:points\:f(x)=x+\cos(2x)
|
range of x^2+6x+3
|
range\:x^{2}+6x+3
|
perpendicular y=-1/3 x-2,\at (1,3)
|
perpendicular\:y=-\frac{1}{3}x-2,\at\:(1,3)
|
line-4x+6y+1=0
|
line\:-4x+6y+1=0
|
extreme points of f(x)= 8/(x^2+4)
|
extreme\:points\:f(x)=\frac{8}{x^{2}+4}
|
intercepts of f(x)=-2x^2+8x
|
intercepts\:f(x)=-2x^{2}+8x
|
range of sqrt(6x-3)
|
range\:\sqrt{6x-3}
|
line (4,2),(1,4)
|
line\:(4,2),(1,4)
|
inverse of y=x^2-36
|
inverse\:y=x^{2}-36
|
domain of f(x)=11-x
|
domain\:f(x)=11-x
|
extreme points of f(x)=x^2-10,[-2,3]
|
extreme\:points\:f(x)=x^{2}-10,[-2,3]
|
asymptotes of f(x)=sqrt(x^2+3x+2)+1
|
asymptotes\:f(x)=\sqrt{x^{2}+3x+2}+1
|
domain of f(x)=sqrt((x-8)/(x-2)+6)
|
domain\:f(x)=\sqrt{\frac{x-8}{x-2}+6}
|
intercepts of x^3+2x^2-16x-32
|
intercepts\:x^{3}+2x^{2}-16x-32
|
line (-1,3)(2,-4)
|
line\:(-1,3)(2,-4)
|
asymptotes of 2/(x-6)
|
asymptotes\:\frac{2}{x-6}
|
inverse of f(x)= 3/(-x-1)+1
|
inverse\:f(x)=\frac{3}{-x-1}+1
|
asymptotes of f(x)=(4x-7)/(x-3)
|
asymptotes\:f(x)=\frac{4x-7}{x-3}
|
domain of x/(\sqrt[4]{9-x^2)}
|
domain\:\frac{x}{\sqrt[4]{9-x^{2}}}
|
perpendicular y=3x-7,\at (3,-5)
|
perpendicular\:y=3x-7,\at\:(3,-5)
|
domain of \sqrt[3]{x}
|
domain\:\sqrt[3]{x}
|
parity tan^{-1}(cot(x))
|
parity\:\tan^{-1}(\cot(x))
|
domain of sqrt(x^2-4x-45)
|
domain\:\sqrt{x^{2}-4x-45}
|
domain of f(x)=5-4x
|
domain\:f(x)=5-4x
|
slope intercept of 2y+8x=2
|
slope\:intercept\:2y+8x=2
|
parallel 5x-4y=-3,\at (5,3)
|
parallel\:5x-4y=-3,\at\:(5,3)
|
parity f(x)=6x^5+4x
|
parity\:f(x)=6x^{5}+4x
|
domain of (x-2)/x
|
domain\:\frac{x-2}{x}
|
slope intercept of 6x-2y=10
|
slope\:intercept\:6x-2y=10
|
inflection points of 2x^3+3x^2-180x
|
inflection\:points\:2x^{3}+3x^{2}-180x
|
asymptotes of f(x)= 7/(x-4)
|
asymptotes\:f(x)=\frac{7}{x-4}
|
domain of y=(x^3-1)\div x
|
domain\:y=(x^{3}-1)\div\:x
|
inverse of f(x)=-5x-4
|
inverse\:f(x)=-5x-4
|
midpoint (4,5)(1,2)
|
midpoint\:(4,5)(1,2)
|
asymptotes of f(x)=12x-7-2/(3x-3)
|
asymptotes\:f(x)=12x-7-\frac{2}{3x-3}
|
intercepts of f(x)=(3x^2-3x-6)/(x^2-1)
|
intercepts\:f(x)=\frac{3x^{2}-3x-6}{x^{2}-1}
|
domain of g(x)=(sqrt(9+x))/(4-x)
|
domain\:g(x)=\frac{\sqrt{9+x}}{4-x}
|
inverse of f(x)=3-\sqrt[3]{x}
|
inverse\:f(x)=3-\sqrt[3]{x}
|
asymptotes of f(x)=(-3x^3)/(x-4)
|
asymptotes\:f(x)=\frac{-3x^{3}}{x-4}
|
domain of f(x)=(2,8),(6,5),(7,-8),(9,2)
|
domain\:f(x)=(2,8),(6,5),(7,-8),(9,2)
|
range of sqrt(9/x+5)
|
range\:\sqrt{\frac{9}{x}+5}
|
inverse of (50e^t)/(2e^t-1)
|
inverse\:\frac{50e^{t}}{2e^{t}-1}
|
parity f(x)=xcos(x)
|
parity\:f(x)=xcos(x)
|
midpoint (3,-6)(-3,-4)
|
midpoint\:(3,-6)(-3,-4)
|
domain of ln(x+2)
|
domain\:\ln(x+2)
|
domain of 1/(sqrt(x^2+7))
|
domain\:\frac{1}{\sqrt{x^{2}+7}}
|
range of 3x^2+2x-1
|
range\:3x^{2}+2x-1
|