domain of y=log_{4}(x+3)
|
domain\:y=\log_{4}(x+3)
|
inverse of y= 1/(3^x)
|
inverse\:y=\frac{1}{3^{x}}
|
extreme points of f(x)=x^3-x^2-x-3
|
extreme\:points\:f(x)=x^{3}-x^{2}-x-3
|
inverse of f(x)=(x+3)/x
|
inverse\:f(x)=\frac{x+3}{x}
|
range of sqrt(4-z^2)
|
range\:\sqrt{4-z^{2}}
|
range of f(x)=(5x-2)^2(3x+4)^3(x+1)^5
|
range\:f(x)=(5x-2)^{2}(3x+4)^{3}(x+1)^{5}
|
asymptotes of f(x)=(2/3)^{x-3}
|
asymptotes\:f(x)=(\frac{2}{3})^{x-3}
|
perpendicular y= 1/2 x+3
|
perpendicular\:y=\frac{1}{2}x+3
|
inverse of f(x)=(x+2)/(x+6)
|
inverse\:f(x)=\frac{x+2}{x+6}
|
extreme points of f(x)=xsqrt(x^2+1)
|
extreme\:points\:f(x)=x\sqrt{x^{2}+1}
|
inverse of log_{4}(x-3)+5
|
inverse\:\log_{4}(x-3)+5
|
domain of f(x)=sqrt(x+10)
|
domain\:f(x)=\sqrt{x+10}
|
intercepts of y=2x^2-8
|
intercepts\:y=2x^{2}-8
|
domain of sqrt(-x-6)
|
domain\:\sqrt{-x-6}
|
intercepts of f(x)=4-3/4 x
|
intercepts\:f(x)=4-\frac{3}{4}x
|
inverse of f(x)=8+\sqrt[3]{x}
|
inverse\:f(x)=8+\sqrt[3]{x}
|
extreme points of f(x)=x^2+7x+1
|
extreme\:points\:f(x)=x^{2}+7x+1
|
domain of f(x)=x^2-6x+8
|
domain\:f(x)=x^{2}-6x+8
|
intercepts of (3x^2+6)/(x^2-2x-3)
|
intercepts\:\frac{3x^{2}+6}{x^{2}-2x-3}
|
domain of f(x)=sqrt(8x+1)
|
domain\:f(x)=\sqrt{8x+1}
|
asymptotes of (8x^2+x-3)/(x^2+x-2)
|
asymptotes\:\frac{8x^{2}+x-3}{x^{2}+x-2}
|
intercepts of 1/(x+2)
|
intercepts\:\frac{1}{x+2}
|
domain of f(x)=7x
|
domain\:f(x)=7x
|
parity f(x)=sqrt(x^2+1)
|
parity\:f(x)=\sqrt{x^{2}+1}
|
asymptotes of f(x)=(4x^2+8x+5)/(-2x-2)
|
asymptotes\:f(x)=\frac{4x^{2}+8x+5}{-2x-2}
|
inverse of f(x)=(x-5)^2
|
inverse\:f(x)=(x-5)^{2}
|
inverse of f(x)=\sqrt[3]{x-9}+1
|
inverse\:f(x)=\sqrt[3]{x-9}+1
|
inverse of f(6)
|
inverse\:f(6)
|
inverse of f(x)= 4/((2x-3)^2)+5
|
inverse\:f(x)=\frac{4}{(2x-3)^{2}}+5
|
range of f(x)=x^2(x-6)
|
range\:f(x)=x^{2}(x-6)
|
range of f(x)= 1/(1-\frac{1){(x-2)}}
|
range\:f(x)=\frac{1}{1-\frac{1}{(x-2)}}
|
asymptotes of (x^2-9x+39)/(x-7)
|
asymptotes\:\frac{x^{2}-9x+39}{x-7}
|
domain of f(x)=(sqrt(x+3))^2
|
domain\:f(x)=(\sqrt{x+3})^{2}
|
intercepts of (3(x-2))/(2(x-2))
|
intercepts\:\frac{3(x-2)}{2(x-2)}
|
domain of f(x)=sqrt(2x-5)
|
domain\:f(x)=\sqrt{2x-5}
|
asymptotes of f(x)=(-2x^2)/(2(x^2-3x+2))
|
asymptotes\:f(x)=\frac{-2x^{2}}{2(x^{2}-3x+2)}
|
extreme points of f(x)=xe^{-9x}
|
extreme\:points\:f(x)=xe^{-9x}
|
slope intercept of 16x-20y=60
|
slope\:intercept\:16x-20y=60
|
domain of x^x
|
domain\:x^{x}
|
slope intercept of 5x+2y=6
|
slope\:intercept\:5x+2y=6
|
midpoint (5,10)(9,4)
|
midpoint\:(5,10)(9,4)
|
line (-5,-2),(5,3)
|
line\:(-5,-2),(5,3)
|
parity ((x^2-3x-2))/(4x^4+5x-4)
|
parity\:\frac{(x^{2}-3x-2)}{4x^{4}+5x-4}
|
domain of f(x)=ln(13t)
|
domain\:f(x)=\ln(13t)
|
domain of (x+2)/(x^2-9)
|
domain\:\frac{x+2}{x^{2}-9}
|
line m=-1/2 ,\at (4,1)
|
line\:m=-\frac{1}{2},\at\:(4,1)
|
asymptotes of ((x^3-9x))/(x+2)
|
asymptotes\:\frac{(x^{3}-9x)}{x+2}
|
midpoint (15,-12,)(-26,6)
|
midpoint\:(15,-12,)(-26,6)
|
amplitude of sec(x)
|
amplitude\:\sec(x)
|
midpoint (5,8)(3,9)
|
midpoint\:(5,8)(3,9)
|
domain of f(x)=sqrt(1/2 x-10)+3
|
domain\:f(x)=\sqrt{\frac{1}{2}x-10}+3
|
inverse of f(x)=5-2/x
|
inverse\:f(x)=5-\frac{2}{x}
|
critical points of f(x)=(x+4)e^{-x}
|
critical\:points\:f(x)=(x+4)e^{-x}
|
extreme points of-4x^4+5x^3-x^2
|
extreme\:points\:-4x^{4}+5x^{3}-x^{2}
|
domain of-log_{3}(x)+4
|
domain\:-\log_{3}(x)+4
|
domain of f(x)=2x-15
|
domain\:f(x)=2x-15
|
slope intercept of 3x+y=-7
|
slope\:intercept\:3x+y=-7
|
monotone intervals f(x)=(9t)/(t^2+4)
|
monotone\:intervals\:f(x)=\frac{9t}{t^{2}+4}
|
range of sqrt(x-3)+2
|
range\:\sqrt{x-3}+2
|
parity f(x)=xsqrt(10-x^2)
|
parity\:f(x)=x\sqrt{10-x^{2}}
|
domain of f(x)= x/(3x+4)
|
domain\:f(x)=\frac{x}{3x+4}
|
parity f(\beta)=1+csc(\beta)
|
parity\:f(\beta)=1+\csc(\beta)
|
inverse of f(x)=-x^{12}
|
inverse\:f(x)=-x^{12}
|
extreme points of (50x)/(x^2+25)
|
extreme\:points\:\frac{50x}{x^{2}+25}
|
domain of f(x)= 7/x
|
domain\:f(x)=\frac{7}{x}
|
critical points of 2x^5+5x^4-17
|
critical\:points\:2x^{5}+5x^{4}-17
|
range of x^2+12
|
range\:x^{2}+12
|
midpoint (-7,9)(-1,6)
|
midpoint\:(-7,9)(-1,6)
|
asymptotes of f(x)=3sec(x)
|
asymptotes\:f(x)=3\sec(x)
|
line (3,)(8,)
|
line\:(3,)(8,)
|
domain of f(x)=\sqrt[3]{8-x^2}
|
domain\:f(x)=\sqrt[3]{8-x^{2}}
|
intercepts of f(x)=(-x^2+9)/(4x-12)
|
intercepts\:f(x)=\frac{-x^{2}+9}{4x-12}
|
critical points of e^x-x
|
critical\:points\:e^{x}-x
|
inverse of f(x)=2x^2-x+1
|
inverse\:f(x)=2x^{2}-x+1
|
line (2,1)m=0
|
line\:(2,1)m=0
|
line x=y
|
line\:x=y
|
midpoint (-1,2)(5,4)
|
midpoint\:(-1,2)(5,4)
|
domain of f(x)=-x^2+4x+1
|
domain\:f(x)=-x^{2}+4x+1
|
range of f(t)= 4/(3-t)
|
range\:f(t)=\frac{4}{3-t}
|
inverse of 7-x^3
|
inverse\:7-x^{3}
|
domain of sqrt(5x-6)
|
domain\:\sqrt{5x-6}
|
domain of f(x)=(x+3)/(x^2-6x+9)
|
domain\:f(x)=\frac{x+3}{x^{2}-6x+9}
|
domain of x-3
|
domain\:x-3
|
domain of f(x)=4sqrt(x+3)-4
|
domain\:f(x)=4\sqrt{x+3}-4
|
inverse of f(x)=(x+1)^3
|
inverse\:f(x)=(x+1)^{3}
|
slope intercept of x-4y=12
|
slope\:intercept\:x-4y=12
|
monotone intervals y=-3/(x+1)
|
monotone\:intervals\:y=-\frac{3}{x+1}
|
domain of log_{3}(x+2)-1
|
domain\:\log_{3}(x+2)-1
|
intercepts of s^3
|
intercepts\:s^{3}
|
parity f(x)=x^6-4x
|
parity\:f(x)=x^{6}-4x
|
inverse of (x+1)/(x+2)
|
inverse\:\frac{x+1}{x+2}
|
asymptotes of f(x)=(x^6)/(x^4+5)
|
asymptotes\:f(x)=\frac{x^{6}}{x^{4}+5}
|
parallel y=3x
|
parallel\:y=3x
|
domain of h(x)=4-x^2
|
domain\:h(x)=4-x^{2}
|
domain of f(x)=-3/x
|
domain\:f(x)=-\frac{3}{x}
|
slope of 3x+8y=24
|
slope\:3x+8y=24
|
inverse of f(x)=5(x+9)^{1/4}
|
inverse\:f(x)=5(x+9)^{\frac{1}{4}}
|
domain of-x^2+8x
|
domain\:-x^{2}+8x
|
domain of 4+x
|
domain\:4+x
|
inverse of f(x)=(1-3x)/(3+2x)
|
inverse\:f(x)=\frac{1-3x}{3+2x}
|