line m= 4/9 ,\at (-5,-10)
|
line\:m=\frac{4}{9},\at\:(-5,-10)
|
inverse of f(x)=4x^3-3
|
inverse\:f(x)=4x^{3}-3
|
range of f(x)= 3/2 (1/2)+1
|
range\:f(x)=\frac{3}{2}(\frac{1}{2})+1
|
inverse of f(x)=-1/3 x+2
|
inverse\:f(x)=-\frac{1}{3}x+2
|
periodicity of f(x)=2cos(5t)-3sin(5t)
|
periodicity\:f(x)=2\cos(5t)-3\sin(5t)
|
inverse of f(x)=(x-2)^2-4
|
inverse\:f(x)=(x-2)^{2}-4
|
inverse of f(x)=3x^2-x
|
inverse\:f(x)=3x^{2}-x
|
range of-2/x
|
range\:-\frac{2}{x}
|
symmetry-1/x
|
symmetry\:-\frac{1}{x}
|
midpoint (-4,-2)(-2,3)
|
midpoint\:(-4,-2)(-2,3)
|
domain of sqrt(-(x+2)(x-2))+2+x
|
domain\:\sqrt{-(x+2)(x-2)}+2+x
|
domain of y=\sqrt[3]{x}
|
domain\:y=\sqrt[3]{x}
|
domain of y=sqrt(1/(x^2-4))
|
domain\:y=\sqrt{\frac{1}{x^{2}-4}}
|
range of (2x-5)/(sqrt(x^2-3x-28))
|
range\:\frac{2x-5}{\sqrt{x^{2}-3x-28}}
|
domain of f(x)=3*e^{2x}
|
domain\:f(x)=3\cdot\:e^{2x}
|
intercepts of (x-4)/(x-2)
|
intercepts\:\frac{x-4}{x-2}
|
intercepts of f(x)=-4x^2-20x+1
|
intercepts\:f(x)=-4x^{2}-20x+1
|
inflection points of f(x)=ln(3-4x^2)
|
inflection\:points\:f(x)=\ln(3-4x^{2})
|
inflection points of x/(sqrt(x^2+1))
|
inflection\:points\:\frac{x}{\sqrt{x^{2}+1}}
|
parity f(x)= 5/(x^3)
|
parity\:f(x)=\frac{5}{x^{3}}
|
asymptotes of f(x)=-2/(x+4)
|
asymptotes\:f(x)=-\frac{2}{x+4}
|
domain of (x-5)/(x^2-1)
|
domain\:\frac{x-5}{x^{2}-1}
|
inverse of f(x)=x-(2/x)
|
inverse\:f(x)=x-(\frac{2}{x})
|
inverse of f(x)=14x^3-10
|
inverse\:f(x)=14x^{3}-10
|
inverse of 2-3^{5-x}
|
inverse\:2-3^{5-x}
|
monotone intervals (2x-1)^7(x+5)^6
|
monotone\:intervals\:(2x-1)^{7}(x+5)^{6}
|
intercepts of (2x+1)/(3x^2)
|
intercepts\:\frac{2x+1}{3x^{2}}
|
domain of f(x)=((x+1)^2)/(sqrt(2x-1))
|
domain\:f(x)=\frac{(x+1)^{2}}{\sqrt{2x-1}}
|
shift y=-5sin(pi-4x)+1
|
shift\:y=-5\sin(\pi-4x)+1
|
inverse of (x+4)/(x-5)
|
inverse\:\frac{x+4}{x-5}
|
intercepts of f(x)=x^2-4x-3
|
intercepts\:f(x)=x^{2}-4x-3
|
domain of 2sqrt(x)-5
|
domain\:2\sqrt{x}-5
|
inverse of f(x)=y=4x-2
|
inverse\:f(x)=y=4x-2
|
range of x^3-11
|
range\:x^{3}-11
|
asymptotes of sin(x)
|
asymptotes\:\sin(x)
|
midpoint (1,-5)(9,1)
|
midpoint\:(1,-5)(9,1)
|
asymptotes of (8x)/(x^2-16)
|
asymptotes\:\frac{8x}{x^{2}-16}
|
asymptotes of (3x)/(x-4)
|
asymptotes\:\frac{3x}{x-4}
|
domain of f(x)=(x-1)/(2x+3)
|
domain\:f(x)=\frac{x-1}{2x+3}
|
range of f(x)= 1/(x+3)+2
|
range\:f(x)=\frac{1}{x+3}+2
|
intercepts of f(x)=y= 1/3 x+1
|
intercepts\:f(x)=y=\frac{1}{3}x+1
|
inverse of f(x)=(x^2)/2
|
inverse\:f(x)=\frac{x^{2}}{2}
|
midpoint (5,-14)(12,-9)
|
midpoint\:(5,-14)(12,-9)
|
inverse of f(x)=x^2+3dondex>= 0
|
inverse\:f(x)=x^{2}+3dondex\ge\:0
|
asymptotes of y=x^4-16x^2
|
asymptotes\:y=x^{4}-16x^{2}
|
domain of f(x)= 1/(sqrt(z-1))
|
domain\:f(x)=\frac{1}{\sqrt{z-1}}
|
range of f(x)=x^2+5
|
range\:f(x)=x^{2}+5
|
domain of (sqrt(x-3))/(x-10)
|
domain\:\frac{\sqrt{x-3}}{x-10}
|
inflection points of 3x^4-20x^3+24x^2
|
inflection\:points\:3x^{4}-20x^{3}+24x^{2}
|
asymptotes of f(x)=(-3x-9)/(x^2-x-12)
|
asymptotes\:f(x)=\frac{-3x-9}{x^{2}-x-12}
|
inverse of y=(5)^x
|
inverse\:y=(5)^{x}
|
domain of sqrt(16-x)
|
domain\:\sqrt{16-x}
|
extreme points of ln(1+x)
|
extreme\:points\:\ln(1+x)
|
domain of f(x)= 1/(sqrt(x^2-4))
|
domain\:f(x)=\frac{1}{\sqrt{x^{2}-4}}
|
asymptotes of f(x)=5csc(2x)-5
|
asymptotes\:f(x)=5\csc(2x)-5
|
midpoint (0,9)(5,4)
|
midpoint\:(0,9)(5,4)
|
symmetry f(x)=0.5x^2-3
|
symmetry\:f(x)=0.5x^{2}-3
|
domain of f(t)=(cos(t),ln(t), 1/(t-2))
|
domain\:f(t)=(\cos(t),\ln(t),\frac{1}{t-2})
|
domain of 5-sqrt(x+25)
|
domain\:5-\sqrt{x+25}
|
domain of f(x)=tan^{-1}(x)
|
domain\:f(x)=\tan^{-1}(x)
|
line (3,-4),(3,-1)
|
line\:(3,-4),(3,-1)
|
domain of f(x)=(x+2)/(x-2)
|
domain\:f(x)=\frac{x+2}{x-2}
|
slope of 2x+y=-3
|
slope\:2x+y=-3
|
domain of 3/(sqrt(t))
|
domain\:\frac{3}{\sqrt{t}}
|
inverse of f(x)=4x+7
|
inverse\:f(x)=4x+7
|
domain of f(x)=\sqrt[4]{x^2-4x}
|
domain\:f(x)=\sqrt[4]{x^{2}-4x}
|
slope intercept of 11x+4y=1
|
slope\:intercept\:11x+4y=1
|
domain of f(x)=cos(2)x
|
domain\:f(x)=\cos(2)x
|
domain of f(x)=(30x^2)/((6-5x^3)^3)
|
domain\:f(x)=\frac{30x^{2}}{(6-5x^{3})^{3}}
|
domain of y=2x^3-12x^2+10x+10
|
domain\:y=2x^{3}-12x^{2}+10x+10
|
domain of f(x)= 1/(sqrt(x^2-4x))
|
domain\:f(x)=\frac{1}{\sqrt{x^{2}-4x}}
|
inverse of f(x)=x^3-4
|
inverse\:f(x)=x^{3}-4
|
domain of log_{3}(x-1)+2
|
domain\:\log_{3}(x-1)+2
|
midpoint (-7,1)(5,-7)
|
midpoint\:(-7,1)(5,-7)
|
line (-3,-1)(-4,-7)
|
line\:(-3,-1)(-4,-7)
|
inflection points of f(x)= x/(x+6)
|
inflection\:points\:f(x)=\frac{x}{x+6}
|
domain of f(x)=2\div (x-3)
|
domain\:f(x)=2\div\:(x-3)
|
inverse of y=sqrt(x)+4
|
inverse\:y=\sqrt{x}+4
|
range of f(x)= 1/3 sqrt(-2(x+6))+4
|
range\:f(x)=\frac{1}{3}\sqrt{-2(x+6)}+4
|
critical points of f(x)=12x^2-12x+2
|
critical\:points\:f(x)=12x^{2}-12x+2
|
range of 1/5 x-9/5
|
range\:\frac{1}{5}x-\frac{9}{5}
|
symmetry 10x^2
|
symmetry\:10x^{2}
|
asymptotes of f(x)=(x^3)/(x^2-81)
|
asymptotes\:f(x)=\frac{x^{3}}{x^{2}-81}
|
shift y=cos(x+(pi)/2)
|
shift\:y=\cos(x+\frac{\pi}{2})
|
midpoint (0,8)(4,-6)
|
midpoint\:(0,8)(4,-6)
|
inflection points of f(x)=x2
|
inflection\:points\:f(x)=x2
|
extreme points of 2xe^x
|
extreme\:points\:2xe^{x}
|
asymptotes of (x^2+3x-10)/(x^2-25)
|
asymptotes\:\frac{x^{2}+3x-10}{x^{2}-25}
|
intercepts of (x-4)/(x^2-4x)
|
intercepts\:\frac{x-4}{x^{2}-4x}
|
range of f(x)= x/(1+|x|)
|
range\:f(x)=\frac{x}{1+|x|}
|
inverse of 1/(x^2-2)
|
inverse\:\frac{1}{x^{2}-2}
|
parity ((x+3))/(2x^4+5x^3-x-9)
|
parity\:\frac{(x+3)}{2x^{4}+5x^{3}-x-9}
|
domain of f(x)=3x^3-2
|
domain\:f(x)=3x^{3}-2
|
asymptotes of f(x)=(x^2+x-6)/(x^2-4)
|
asymptotes\:f(x)=\frac{x^{2}+x-6}{x^{2}-4}
|
midpoint (-5,-2)(-8,-5)
|
midpoint\:(-5,-2)(-8,-5)
|
domain of f(x)=e^{-2t}
|
domain\:f(x)=e^{-2t}
|
domain of x/(x^2+10x+24)
|
domain\:\frac{x}{x^{2}+10x+24}
|
intercepts of f(x)=y=-2x+8
|
intercepts\:f(x)=y=-2x+8
|
domain of f(x)=2x^2+8x+2
|
domain\:f(x)=2x^{2}+8x+2
|
range of f(x)=(sqrt(x-5))/(x-11)
|
range\:f(x)=\frac{\sqrt{x-5}}{x-11}
|