slope of 2y=-5x+5
|
slope\:2y=-5x+5
|
intercepts of f(x)=x^3+x^2-3x-1
|
intercepts\:f(x)=x^{3}+x^{2}-3x-1
|
inverse of 4sqrt(x+3)
|
inverse\:4\sqrt{x+3}
|
domain of f(x)=3x^2+2x-1
|
domain\:f(x)=3x^{2}+2x-1
|
domain of e^{sqrt(x^3-6x^2+8x)}
|
domain\:e^{\sqrt{x^{3}-6x^{2}+8x}}
|
line x=4
|
line\:x=4
|
symmetry y=x^3-27
|
symmetry\:y=x^{3}-27
|
range of |x-3|
|
range\:|x-3|
|
slope intercept of-x+y=3
|
slope\:intercept\:-x+y=3
|
critical points of f(x)=4x^3-12x^2
|
critical\:points\:f(x)=4x^{3}-12x^{2}
|
intercepts of f(x)=((2x^2+5))/(x(x-2))
|
intercepts\:f(x)=\frac{(2x^{2}+5)}{x(x-2)}
|
perpendicular y=8x-7,\at (-2,5)
|
perpendicular\:y=8x-7,\at\:(-2,5)
|
y=-4x^2
|
y=-4x^{2}
|
inverse of f(x)=(x+1)/(x-4)
|
inverse\:f(x)=\frac{x+1}{x-4}
|
domain of (x^2-9)/(x-3)
|
domain\:\frac{x^{2}-9}{x-3}
|
asymptotes of f(x)=(x^2+x-2)/(x+1)
|
asymptotes\:f(x)=\frac{x^{2}+x-2}{x+1}
|
extreme points of f(x)=x+(81)/x
|
extreme\:points\:f(x)=x+\frac{81}{x}
|
inverse of 2+sqrt(4+11x)
|
inverse\:2+\sqrt{4+11x}
|
inverse of f(x)=(5x)/(x+3)
|
inverse\:f(x)=\frac{5x}{x+3}
|
inverse of f(x)=10x+8
|
inverse\:f(x)=10x+8
|
domain of f(x)=ln(3)-ln(sqrt(4+x))
|
domain\:f(x)=\ln(3)-\ln(\sqrt{4+x})
|
intercepts of 8/((x-2)^3)
|
intercepts\:\frac{8}{(x-2)^{3}}
|
range of f(x)=sqrt(-x^2-8x-7)-2
|
range\:f(x)=\sqrt{-x^{2}-8x-7}-2
|
symmetry (x-2)^2+5
|
symmetry\:(x-2)^{2}+5
|
f(x)=-x^2+4x
|
f(x)=-x^{2}+4x
|
extreme points of F(x)=-9/(x^2+3)
|
extreme\:points\:F(x)=-\frac{9}{x^{2}+3}
|
inflection points of f(x)=-x^7+7x^6
|
inflection\:points\:f(x)=-x^{7}+7x^{6}
|
slope of y+2=-2(x-3)
|
slope\:y+2=-2(x-3)
|
range of f(x)= 1/(x-7)+4
|
range\:f(x)=\frac{1}{x-7}+4
|
asymptotes of f(x)=(3x^2+1)/(x^2-2x-3)
|
asymptotes\:f(x)=\frac{3x^{2}+1}{x^{2}-2x-3}
|
inverse of y=x^2-1,x<= 0
|
inverse\:y=x^{2}-1,x\le\:0
|
domain of f(x)=3+sqrt(16-x^2)
|
domain\:f(x)=3+\sqrt{16-x^{2}}
|
domain of f(x)=(1/x)
|
domain\:f(x)=(\frac{1}{x})
|
inverse of f(x)=1-e^{-0.5x}
|
inverse\:f(x)=1-e^{-0.5x}
|
domain of f(x)=sqrt(t^2-9)
|
domain\:f(x)=\sqrt{t^{2}-9}
|
domain of f(x)= 1/(1+x^2)
|
domain\:f(x)=\frac{1}{1+x^{2}}
|
parallel y=-2x+2
|
parallel\:y=-2x+2
|
asymptotes of (x^2-9)/(x^2+1)
|
asymptotes\:\frac{x^{2}-9}{x^{2}+1}
|
range of y=sqrt(2-x)
|
range\:y=\sqrt{2-x}
|
domain of f(x)=(1-6t)/(2+t)
|
domain\:f(x)=\frac{1-6t}{2+t}
|
asymptotes of f(x)=-4/(x+4)
|
asymptotes\:f(x)=-\frac{4}{x+4}
|
inverse of f(x)=((-12-2n))/3
|
inverse\:f(x)=\frac{(-12-2n)}{3}
|
asymptotes of f(x)=(ln(x))/x
|
asymptotes\:f(x)=\frac{\ln(x)}{x}
|
y=-x
|
y=-x
|
domain of y=(2x-1)/(x^2-x)
|
domain\:y=\frac{2x-1}{x^{2}-x}
|
extreme points of f(x)=0.8x+(72)/x
|
extreme\:points\:f(x)=0.8x+\frac{72}{x}
|
domain of f(x)=(x^2-x-12)/(x^2+x-6)
|
domain\:f(x)=\frac{x^{2}-x-12}{x^{2}+x-6}
|
domain of V(x)=x(24-4x)(24-2x)
|
domain\:V(x)=x(24-4x)(24-2x)
|
extreme points of f(x)= 3/(x+5)
|
extreme\:points\:f(x)=\frac{3}{x+5}
|
inverse of x^2-8x+2
|
inverse\:x^{2}-8x+2
|
perpendicular x-3y=9,\at (3,5)
|
perpendicular\:x-3y=9,\at\:(3,5)
|
line m=4,\at (-1,-3)
|
line\:m=4,\at\:(-1,-3)
|
domain of ((4-x))/(x^2-3x)
|
domain\:\frac{(4-x)}{x^{2}-3x}
|
range of-5x^2-40x-75
|
range\:-5x^{2}-40x-75
|
domain of f(x)=sqrt((x-2)/(x-4)+3)
|
domain\:f(x)=\sqrt{\frac{x-2}{x-4}+3}
|
slope of 3,(2,3)
|
slope\:3,(2,3)
|
extreme points of f(x)=x^6e^x-7
|
extreme\:points\:f(x)=x^{6}e^{x}-7
|
inverse of f(x)=log_{2}((e^x-6)/4)
|
inverse\:f(x)=\log_{2}(\frac{e^{x}-6}{4})
|
midpoint (-2,-8)(2,-3)
|
midpoint\:(-2,-8)(2,-3)
|
domain of f(x)=(x+2)/(x^2-2x+1)
|
domain\:f(x)=\frac{x+2}{x^{2}-2x+1}
|
symmetry (y-3)^2=8(x-5)
|
symmetry\:(y-3)^{2}=8(x-5)
|
inverse of y=6^{x/5}
|
inverse\:y=6^{\frac{x}{5}}
|
asymptotes of f(x)=(x^2+6x+9)/(x^3+7x^2)
|
asymptotes\:f(x)=\frac{x^{2}+6x+9}{x^{3}+7x^{2}}
|
domain of f(x)=sqrt(x^3+6x^2+8x)
|
domain\:f(x)=\sqrt{x^{3}+6x^{2}+8x}
|
symmetry y^2-x-25=0
|
symmetry\:y^{2}-x-25=0
|
intercepts of f(x)= 8/(x^2+3x-9)
|
intercepts\:f(x)=\frac{8}{x^{2}+3x-9}
|
domain of f(x)=(x-2)^2+2
|
domain\:f(x)=(x-2)^{2}+2
|
parity f(x)=4x^5
|
parity\:f(x)=4x^{5}
|
inverse of f(x)= 8/3 x+1/2
|
inverse\:f(x)=\frac{8}{3}x+\frac{1}{2}
|
symmetry f(x)=x^2+6x+10
|
symmetry\:f(x)=x^{2}+6x+10
|
symmetry xy^2+12=0
|
symmetry\:xy^{2}+12=0
|
inverse of f(x)=-7x+2
|
inverse\:f(x)=-7x+2
|
midpoint (-2,7)(7,4)
|
midpoint\:(-2,7)(7,4)
|
amplitude of sin(x+(pi)/4)
|
amplitude\:\sin(x+\frac{\pi}{4})
|
range of f(x)= 1/(1-sin(x))
|
range\:f(x)=\frac{1}{1-\sin(x)}
|
critical points of f(x)=(2x-8)^{2/3}
|
critical\:points\:f(x)=(2x-8)^{\frac{2}{3}}
|
critical points of x^3-3/2 x^2,[-5,4]
|
critical\:points\:x^{3}-\frac{3}{2}x^{2},[-5,4]
|
asymptotes of f(x)=(x^2+1)/(2x^2+7)
|
asymptotes\:f(x)=\frac{x^{2}+1}{2x^{2}+7}
|
domain of 4(1/2)^{x-3}-2
|
domain\:4(\frac{1}{2})^{x-3}-2
|
intercepts of y=5x^2
|
intercepts\:y=5x^{2}
|
range of-e^{x-1}-3
|
range\:-e^{x-1}-3
|
parity f(x)=(1-e^{1/x})/(1+e^{1/x)}
|
parity\:f(x)=\frac{1-e^{\frac{1}{x}}}{1+e^{\frac{1}{x}}}
|
parity |x|
|
parity\:|x|
|
asymptotes of 3cot(1/2 x)-2
|
asymptotes\:3\cot(\frac{1}{2}x)-2
|
line (5,7)(1,3)
|
line\:(5,7)(1,3)
|
inverse of \sqrt[3]{x-4}
|
inverse\:\sqrt[3]{x-4}
|
inverse of f(x)=(x-2)/3
|
inverse\:f(x)=\frac{x-2}{3}
|
perpendicular y=8x-5
|
perpendicular\:y=8x-5
|
extreme points of f(x)= x/(x^2-4)
|
extreme\:points\:f(x)=\frac{x}{x^{2}-4}
|
range of f(x)=(x-3)/(x^2-1)
|
range\:f(x)=\frac{x-3}{x^{2}-1}
|
inverse of f(x)=-4<= x<= 5
|
inverse\:f(x)=-4\le\:x\le\:5
|
midpoint (-6,-10)(-2,-8)
|
midpoint\:(-6,-10)(-2,-8)
|
domain of sqrt(x+1)-4
|
domain\:\sqrt{x+1}-4
|
asymptotes of f(x)= 5/(x^2-5x)
|
asymptotes\:f(x)=\frac{5}{x^{2}-5x}
|
asymptotes of f(x)=((-1))/x
|
asymptotes\:f(x)=\frac{(-1)}{x}
|
intercepts of f(x)=y+1=3(x-4)
|
intercepts\:f(x)=y+1=3(x-4)
|
domain of y=\sqrt[5]{x/4}
|
domain\:y=\sqrt[5]{\frac{x}{4}}
|
slope of 3y+1=7
|
slope\:3y+1=7
|
perpendicular 9x+y=3,\at (3,6)
|
perpendicular\:9x+y=3,\at\:(3,6)
|
inverse of f(x)= 3/2 x
|
inverse\:f(x)=\frac{3}{2}x
|