midpoint (4,2)(-1,7)
|
midpoint\:(4,2)(-1,7)
|
domain of (x+4)/(x^3-4x)
|
domain\:\frac{x+4}{x^{3}-4x}
|
inverse of y=1-x/6
|
inverse\:y=1-\frac{x}{6}
|
extreme points of y=x^2+4x+7
|
extreme\:points\:y=x^{2}+4x+7
|
critical points of f(x)=x^2+x-2
|
critical\:points\:f(x)=x^{2}+x-2
|
midpoint (1/2 , 1/3)\land (3/2 ,(-5)/3)
|
midpoint\:(\frac{1}{2},\frac{1}{3})\land\:(\frac{3}{2},\frac{-5}{3})
|
inverse of f(x)=-2x^2+5x-6
|
inverse\:f(x)=-2x^{2}+5x-6
|
extreme points of f(x)=2.2+2.2x-0.6x^2
|
extreme\:points\:f(x)=2.2+2.2x-0.6x^{2}
|
critical points of x^3-9x^2+15x-8
|
critical\:points\:x^{3}-9x^{2}+15x-8
|
domain of f(x)=sqrt(3x-12)
|
domain\:f(x)=\sqrt{3x-12}
|
domain of f(x)=e^x
|
domain\:f(x)=e^{x}
|
inverse of f(x)=sqrt(4+6x)
|
inverse\:f(x)=\sqrt{4+6x}
|
inverse of 2x^2-5x+3
|
inverse\:2x^{2}-5x+3
|
extreme points of x/2+cos(x)
|
extreme\:points\:\frac{x}{2}+\cos(x)
|
inverse of f(x)=8(x-8)^3
|
inverse\:f(x)=8(x-8)^{3}
|
symmetry (x-3)^2+y^2=9
|
symmetry\:(x-3)^{2}+y^{2}=9
|
inverse of f(x)=4x-4
|
inverse\:f(x)=4x-4
|
midpoint (6,4)(4, 5/3)
|
midpoint\:(6,4)(4,\frac{5}{3})
|
inverse of f(x)=20
|
inverse\:f(x)=20
|
intercepts of f(x)= 1/3 x-3
|
intercepts\:f(x)=\frac{1}{3}x-3
|
monotone intervals (sqrt(1-x^2))/x
|
monotone\:intervals\:\frac{\sqrt{1-x^{2}}}{x}
|
domain of-1/((x-1)^2)
|
domain\:-\frac{1}{(x-1)^{2}}
|
extreme points of f(x)= x/(x^2+64)
|
extreme\:points\:f(x)=\frac{x}{x^{2}+64}
|
domain of f(x)=sqrt(x)+sqrt(1-x)
|
domain\:f(x)=\sqrt{x}+\sqrt{1-x}
|
range of (x+2)^{1/2}
|
range\:(x+2)^{\frac{1}{2}}
|
domain of f(x)=((x/(x+8)))/((x/(x+8))+8)
|
domain\:f(x)=\frac{(\frac{x}{x+8})}{(\frac{x}{x+8})+8}
|
inverse of f(x)=(x-3)^2+2
|
inverse\:f(x)=(x-3)^{2}+2
|
domain of-2(x+1)^2(x-4)^3(x+2)
|
domain\:-2(x+1)^{2}(x-4)^{3}(x+2)
|
domain of y=(sqrt(x+8))/(x-7)
|
domain\:y=\frac{\sqrt{x+8}}{x-7}
|
domain of 1/(7x-21)
|
domain\:\frac{1}{7x-21}
|
f(x)=e^{-x^2}
|
f(x)=e^{-x^{2}}
|
range of x^2-6x
|
range\:x^{2}-6x
|
slope of 7y=9
|
slope\:7y=9
|
inverse of f(x)=sqrt(x+6)+2
|
inverse\:f(x)=\sqrt{x+6}+2
|
distance (-3,1),(-2,-4)
|
distance\:(-3,1),(-2,-4)
|
domain of h(t)=(4x-2)/(4x+2)
|
domain\:h(t)=\frac{4x-2}{4x+2}
|
domain of \sqrt[3]{x-8}
|
domain\:\sqrt[3]{x-8}
|
midpoint (2,-4)(8,4)
|
midpoint\:(2,-4)(8,4)
|
amplitude of 20cos(x)
|
amplitude\:20\cos(x)
|
asymptotes of f(x)=(x^2-4x-5)/(x+1)
|
asymptotes\:f(x)=\frac{x^{2}-4x-5}{x+1}
|
asymptotes of f(x)=(x^3)/(1-x^2)
|
asymptotes\:f(x)=\frac{x^{3}}{1-x^{2}}
|
slope of 4x+y=1
|
slope\:4x+y=1
|
inverse of 0.2(y-1)^2-4
|
inverse\:0.2(y-1)^{2}-4
|
range of f(x)= 1/x
|
range\:f(x)=\frac{1}{x}
|
range of 2/(x+2)
|
range\:\frac{2}{x+2}
|
inflection points of x^2sqrt(5+x)
|
inflection\:points\:x^{2}\sqrt{5+x}
|
inverse of-2x^2+3x-1
|
inverse\:-2x^{2}+3x-1
|
domain of f(x)=a^x
|
domain\:f(x)=a^{x}
|
line (1,3)(4,-3)
|
line\:(1,3)(4,-3)
|
distance (-2,-8)(4,4)
|
distance\:(-2,-8)(4,4)
|
inverse of (-x)/3
|
inverse\:\frac{-x}{3}
|
slope intercept of y-1= 3/5 (x+5)
|
slope\:intercept\:y-1=\frac{3}{5}(x+5)
|
domain of f(x)=x^2-3
|
domain\:f(x)=x^{2}-3
|
midpoint (-7,-6)(-4,-1)
|
midpoint\:(-7,-6)(-4,-1)
|
inflection points of 4x^3-33x^2+84x-60
|
inflection\:points\:4x^{3}-33x^{2}+84x-60
|
inverse of f(x)=95x+32
|
inverse\:f(x)=95x+32
|
domain of f(x)=log_{2}(log_{10}(x))
|
domain\:f(x)=\log_{2}(\log_{10}(x))
|
domain of f(x)=(4x)/(x+5)
|
domain\:f(x)=\frac{4x}{x+5}
|
symmetry y=-x^2-2x
|
symmetry\:y=-x^{2}-2x
|
asymptotes of f(x)=(1+e^{-x})/(4e^x)
|
asymptotes\:f(x)=\frac{1+e^{-x}}{4e^{x}}
|
slope of y=1x-1
|
slope\:y=1x-1
|
asymptotes of f(x)=((x-1))/((x^2-25))
|
asymptotes\:f(x)=\frac{(x-1)}{(x^{2}-25)}
|
inverse of (x+5)/(x-1)
|
inverse\:\frac{x+5}{x-1}
|
symmetry x^5-2x
|
symmetry\:x^{5}-2x
|
domain of f(x)= 1/(sqrt(x-13))
|
domain\:f(x)=\frac{1}{\sqrt{x-13}}
|
inverse of f(x)=(x^{1/4}-1)^5
|
inverse\:f(x)=(x^{\frac{1}{4}}-1)^{5}
|
asymptotes of 1+1/x
|
asymptotes\:1+\frac{1}{x}
|
inflection points of f(x)=-1/10 x^5+5x^3
|
inflection\:points\:f(x)=-\frac{1}{10}x^{5}+5x^{3}
|
critical points of f(x)=x^{11/5}+x^{6/5}
|
critical\:points\:f(x)=x^{\frac{11}{5}}+x^{\frac{6}{5}}
|
parity f(x)=xsqrt(x+5)
|
parity\:f(x)=x\sqrt{x+5}
|
asymptotes of f(x)=y=(6x+1)/(3x-5)
|
asymptotes\:f(x)=y=(6x+1)/(3x-5)
|
extreme points of f(x)=x^2-x-12
|
extreme\:points\:f(x)=x^{2}-x-12
|
inverse of f(x)=2e^2+6
|
inverse\:f(x)=2e^{2}+6
|
critical points of f(x)=(27)/((x+6)^2)
|
critical\:points\:f(x)=\frac{27}{(x+6)^{2}}
|
range of cot(x)
|
range\:\cot(x)
|
intercepts of 3x^4-pi x^3+sqrt(11)x-4
|
intercepts\:3x^{4}-\pi\:x^{3}+\sqrt{11}x-4
|
asymptotes of f(x)=((4x+3))/((5x^2+3))
|
asymptotes\:f(x)=\frac{(4x+3)}{(5x^{2}+3)}
|
inverse of f(x)=3
|
inverse\:f(x)=3
|
domain of f(x)=ln(2-x^2)
|
domain\:f(x)=\ln(2-x^{2})
|
monotone intervals 14
|
monotone\:intervals\:14
|
domain of f(x)=(3x)/(sqrt(5-x))
|
domain\:f(x)=\frac{3x}{\sqrt{5-x}}
|
range of (x-3)/((x+4)^2)
|
range\:\frac{x-3}{(x+4)^{2}}
|
domain of f(x)=(sqrt(x+4))/(x-6)
|
domain\:f(x)=\frac{\sqrt{x+4}}{x-6}
|
domain of-3x^2+12x-4
|
domain\:-3x^{2}+12x-4
|
range of 1/(x^3)
|
range\:\frac{1}{x^{3}}
|
range of log_{1/2}(x)
|
range\:\log_{\frac{1}{2}}(x)
|
inverse of f(x)=ln(x-2)+4
|
inverse\:f(x)=\ln(x-2)+4
|
inverse of f(x)=(6+\sqrt[3]{4x})/2
|
inverse\:f(x)=\frac{6+\sqrt[3]{4x}}{2}
|
domain of log_{2}(x)-2
|
domain\:\log_{2}(x)-2
|
inflection points of f(x)=(2x)/(x^2+1)
|
inflection\:points\:f(x)=\frac{2x}{x^{2}+1}
|
domain of f(x)=-x^2+8x-7
|
domain\:f(x)=-x^{2}+8x-7
|
inverse of f(x)= 3/(x-2)
|
inverse\:f(x)=\frac{3}{x-2}
|
inflection points of 3x^4-4x^3+2
|
inflection\:points\:3x^{4}-4x^{3}+2
|
inflection points of (x^3)/(x^2+12)
|
inflection\:points\:\frac{x^{3}}{x^{2}+12}
|
parity f=x^{1/2}tan(x^{1/2})
|
parity\:f=x^{\frac{1}{2}}\tan(x^{\frac{1}{2}})
|
asymptotes of f(x)=(3x^2-3x)/(x^2+x-12)
|
asymptotes\:f(x)=\frac{3x^{2}-3x}{x^{2}+x-12}
|
domain of 1/5 x-3
|
domain\:\frac{1}{5}x-3
|
f(x)=x^2+6x+9
|
f(x)=x^{2}+6x+9
|
domain of f(x)=(2x-13)/(2x-6)
|
domain\:f(x)=\frac{2x-13}{2x-6}
|
midpoint (-4,5)(4,-2)
|
midpoint\:(-4,5)(4,-2)
|