asymptotes of (5x^2+6x-4)/(x^2+1)
|
asymptotes\:\frac{5x^{2}+6x-4}{x^{2}+1}
|
domain of f(x)=sqrt((\sqrt{9-x^2))+2}
|
domain\:f(x)=\sqrt{(\sqrt{9-x^{2}})+2}
|
inverse of f(x)=1+sqrt(7+x)
|
inverse\:f(x)=1+\sqrt{7+x}
|
range of f(x)=sqrt(x-12)
|
range\:f(x)=\sqrt{x-12}
|
inverse of f(x)= x/(x-5)
|
inverse\:f(x)=\frac{x}{x-5}
|
amplitude of-2sin(6x)
|
amplitude\:-2\sin(6x)
|
domain of f(x)=2+sqrt(x+3)
|
domain\:f(x)=2+\sqrt{x+3}
|
slope intercept of-4x+7=y
|
slope\:intercept\:-4x+7=y
|
critical points of f(x)=2x^3+13x^2-60x-3
|
critical\:points\:f(x)=2x^{3}+13x^{2}-60x-3
|
domain of (sqrt(x-8))/(sqrt(x-7))
|
domain\:\frac{\sqrt{x-8}}{\sqrt{x-7}}
|
line (2,)(,)
|
line\:(2,)(,)
|
inverse of f(x)= 5/(sqrt(x))
|
inverse\:f(x)=\frac{5}{\sqrt{x}}
|
asymptotes of f(x)=(x^3)/(x+1)
|
asymptotes\:f(x)=\frac{x^{3}}{x+1}
|
asymptotes of f(x)= x/(sqrt(x^2+1))
|
asymptotes\:f(x)=\frac{x}{\sqrt{x^{2}+1}}
|
line (2,8),(3,8)
|
line\:(2,8),(3,8)
|
line (4,3)(-1,8)
|
line\:(4,3)(-1,8)
|
extreme points of f(x)=3x^2-2x^3
|
extreme\:points\:f(x)=3x^{2}-2x^{3}
|
inverse of f(x)=2x^7+5
|
inverse\:f(x)=2x^{7}+5
|
domain of f(x)=sqrt(3x)
|
domain\:f(x)=\sqrt{3x}
|
domain of e^{-3t}
|
domain\:e^{-3t}
|
intercepts of f(x)=3x+y=2
|
intercepts\:f(x)=3x+y=2
|
asymptotes of f(x)=(x+1)e^x
|
asymptotes\:f(x)=(x+1)e^{x}
|
f(x)=cos(x)
|
f(x)=\cos(x)
|
range of (5x)/(6x-1)
|
range\:\frac{5x}{6x-1}
|
parallel 4y-7x=-4
|
parallel\:4y-7x=-4
|
domain of f(x)=2+sqrt(-1-x)
|
domain\:f(x)=2+\sqrt{-1-x}
|
inverse of f(x)= 4/(2-x)
|
inverse\:f(x)=\frac{4}{2-x}
|
intercepts of 1/x-1
|
intercepts\:\frac{1}{x}-1
|
slope of =3,(2,5)
|
slope\:=3,(2,5)
|
asymptotes of f(x)=(4x^2)/(x+2)
|
asymptotes\:f(x)=\frac{4x^{2}}{x+2}
|
critical points of f(x)=x^4-2x^3+1
|
critical\:points\:f(x)=x^{4}-2x^{3}+1
|
domain of (|x+2|)/(x+2)
|
domain\:\frac{|x+2|}{x+2}
|
inverse of (2x+3)/(x-5)
|
inverse\:\frac{2x+3}{x-5}
|
domain of f(x)=\sqrt[3]{x+1}-4
|
domain\:f(x)=\sqrt[3]{x+1}-4
|
slope of 3x+2y=6
|
slope\:3x+2y=6
|
inverse of y=(9x+13)/(14x-7)
|
inverse\:y=\frac{9x+13}{14x-7}
|
range of \sqrt[3]{x-6}
|
range\:\sqrt[3]{x-6}
|
inverse of 9/x
|
inverse\:\frac{9}{x}
|
asymptotes of f(x)=(x^2-5x+6)/(x-2)
|
asymptotes\:f(x)=\frac{x^{2}-5x+6}{x-2}
|
range of (x^2-4)/(x+2)
|
range\:\frac{x^{2}-4}{x+2}
|
f(x)=-2x+1
|
f(x)=-2x+1
|
domain of sqrt(7+x)
|
domain\:\sqrt{7+x}
|
midpoint (-5/6 ,-1/2)(0, 6/2)
|
midpoint\:(-\frac{5}{6},-\frac{1}{2})(0,\frac{6}{2})
|
extreme points of f(x)=x^8e^x-3
|
extreme\:points\:f(x)=x^{8}e^{x}-3
|
slope of 3x-2y=10
|
slope\:3x-2y=10
|
midpoint (4,-3)(5,5)
|
midpoint\:(4,-3)(5,5)
|
critical points of-x^4-8x^3-15x^2
|
critical\:points\:-x^{4}-8x^{3}-15x^{2}
|
domain of-9/((2+x)^2)
|
domain\:-\frac{9}{(2+x)^{2}}
|
domain of f(x)=(x+11)/(x+2)+1/x
|
domain\:f(x)=\frac{x+11}{x+2}+\frac{1}{x}
|
domain of (2-x)/(x+1)
|
domain\:\frac{2-x}{x+1}
|
domain of f(x)= 1/(x-5)
|
domain\:f(x)=\frac{1}{x-5}
|
domain of f(x)=x^4-2x^2-4
|
domain\:f(x)=x^{4}-2x^{2}-4
|
domain of f(t)=sqrt(t+7)
|
domain\:f(t)=\sqrt{t+7}
|
asymptotes of 1/(x^2-4)
|
asymptotes\:\frac{1}{x^{2}-4}
|
critical points of (x^3-x-18)^4
|
critical\:points\:(x^{3}-x-18)^{4}
|
symmetry y=-4x^2+8x
|
symmetry\:y=-4x^{2}+8x
|
domain of f(x)=(3x)/(x+10)
|
domain\:f(x)=\frac{3x}{x+10}
|
inverse of f(x)=((x+1))/((x-1))
|
inverse\:f(x)=\frac{(x+1)}{(x-1)}
|
extreme points of f(x)=3x^2-x^3
|
extreme\:points\:f(x)=3x^{2}-x^{3}
|
asymptotes of f(x)=(x-6)/(x+6)
|
asymptotes\:f(x)=\frac{x-6}{x+6}
|
midpoint (4,3)(1,2)
|
midpoint\:(4,3)(1,2)
|
intercepts of f(x)=2x-3y=6
|
intercepts\:f(x)=2x-3y=6
|
asymptotes of (x^4)/((1+x)^3)
|
asymptotes\:\frac{x^{4}}{(1+x)^{3}}
|
intercepts of f(x)=2x-4y=12
|
intercepts\:f(x)=2x-4y=12
|
domain of f(x)=(7x)/(8-x)
|
domain\:f(x)=\frac{7x}{8-x}
|
midpoint (16,-6)(8,-8)
|
midpoint\:(16,-6)(8,-8)
|
line (x+3)*(x+2)*(7)=x+2x+3x+6
|
line\:(x+3)\cdot\:(x+2)\cdot\:(7)=x+2x+3x+6
|
inverse of 1/2 (ln(x/2)-1)
|
inverse\:\frac{1}{2}(\ln(\frac{x}{2})-1)
|
line (1,740),(2,4445)
|
line\:(1,740),(2,4445)
|
critical points of f(x)=(x^2)/2+1
|
critical\:points\:f(x)=\frac{x^{2}}{2}+1
|
inflection points of x^4-50x^2+7
|
inflection\:points\:x^{4}-50x^{2}+7
|
asymptotes of f(x)=(x-1)/(x^2-5x+4)
|
asymptotes\:f(x)=\frac{x-1}{x^{2}-5x+4}
|
inverse of f(x)= 1/(x-2)+1
|
inverse\:f(x)=\frac{1}{x-2}+1
|
midpoint (-2,4)(-3,2)
|
midpoint\:(-2,4)(-3,2)
|
asymptotes of f(x)=(5e^x)/(e^x-5)
|
asymptotes\:f(x)=\frac{5e^{x}}{e^{x}-5}
|
intercepts of f(x)=-5x^2-16x+16
|
intercepts\:f(x)=-5x^{2}-16x+16
|
extreme points of y=1-x^{2/3}
|
extreme\:points\:y=1-x^{\frac{2}{3}}
|
extreme points of x+9/x
|
extreme\:points\:x+\frac{9}{x}
|
inverse of x^2-7
|
inverse\:x^{2}-7
|
slope of-3x+2y=-12
|
slope\:-3x+2y=-12
|
slope of-5x+9y=-18
|
slope\:-5x+9y=-18
|
inverse of f(x)=6x+3
|
inverse\:f(x)=6x+3
|
inflection points of f(x)=-x^4-3x^3+6x+1
|
inflection\:points\:f(x)=-x^{4}-3x^{3}+6x+1
|
critical points of f(x)=3x^4-8x^3+6x^2+2
|
critical\:points\:f(x)=3x^{4}-8x^{3}+6x^{2}+2
|
domain of sqrt((x^2-7)/(x^3-x^2-12x))
|
domain\:\sqrt{\frac{x^{2}-7}{x^{3}-x^{2}-12x}}
|
y=x^2+4x+3
|
y=x^{2}+4x+3
|
critical points of f(x)= x/(x^2+1)
|
critical\:points\:f(x)=\frac{x}{x^{2}+1}
|
domain of f(x)=(sqrt(5+x))/(2-x)
|
domain\:f(x)=\frac{\sqrt{5+x}}{2-x}
|
perpendicular 3/2 x+2y= 15/2 ,\at (-4,4)
|
perpendicular\:\frac{3}{2}x+2y=\frac{15}{2},\at\:(-4,4)
|
slope intercept of-1
|
slope\:intercept\:-1
|
parallel 7x+5y=-40
|
parallel\:7x+5y=-40
|
midpoint (11.2,-2.2)(5.2,-10.2)
|
midpoint\:(11.2,-2.2)(5.2,-10.2)
|
inverse of f(x)=(7x^3+2)^{1/5}
|
inverse\:f(x)=(7x^{3}+2)^{\frac{1}{5}}
|
periodicity of 7sin(4(t+7))-8
|
periodicity\:7\sin(4(t+7))-8
|
inverse of f(x)=(x+2)^{1/5}
|
inverse\:f(x)=(x+2)^{\frac{1}{5}}
|
extreme points of f(x)=2x-ln(2x)
|
extreme\:points\:f(x)=2x-\ln(2x)
|
range of sqrt(-1-x)
|
range\:\sqrt{-1-x}
|
monotone intervals 14(x-4)(x+10)
|
monotone\:intervals\:14(x-4)(x+10)
|
inverse of f(x)=-9x^2
|
inverse\:f(x)=-9x^{2}
|
inverse of f(x)=x^{2/3}-15
|
inverse\:f(x)=x^{\frac{2}{3}}-15
|