critical points of (3x)/(4-x^2)
|
critical\:points\:\frac{3x}{4-x^{2}}
|
line (150,147.3)(165,162.7)
|
line\:(150,147.3)(165,162.7)
|
domain of f(x)=sqrt(-x)-3
|
domain\:f(x)=\sqrt{-x}-3
|
range of 2/(t^2-16)
|
range\:\frac{2}{t^{2}-16}
|
inverse of f(x)=7x+7
|
inverse\:f(x)=7x+7
|
slope intercept of 2x-y=3
|
slope\:intercept\:2x-y=3
|
domain of f(x)=sqrt((-x+5)/(x^2-1))
|
domain\:f(x)=\sqrt{\frac{-x+5}{x^{2}-1}}
|
slope intercept of x+y=-5
|
slope\:intercept\:x+y=-5
|
asymptotes of f(x)=6^{x-2}+1
|
asymptotes\:f(x)=6^{x-2}+1
|
range of sqrt(x+4)
|
range\:\sqrt{x+4}
|
intercepts of 2x^3-4x^2-14x+28
|
intercepts\:2x^{3}-4x^{2}-14x+28
|
domain of (sqrt(4-x^2))/(sqrt(x+1))
|
domain\:\frac{\sqrt{4-x^{2}}}{\sqrt{x+1}}
|
inverse of f(x)=sqrt(8x)
|
inverse\:f(x)=\sqrt{8x}
|
asymptotes of f(x)=(x^2-x-12)/x
|
asymptotes\:f(x)=\frac{x^{2}-x-12}{x}
|
intercepts of y= 1/5 x+3
|
intercepts\:y=\frac{1}{5}x+3
|
domain of f(x)=(x+2)/(sqrt(x-7))
|
domain\:f(x)=\frac{x+2}{\sqrt{x-7}}
|
intercepts of x^2+x-6
|
intercepts\:x^{2}+x-6
|
domain of f(x)=(3x-4)/(sqrt(x^2+4x-77))
|
domain\:f(x)=\frac{3x-4}{\sqrt{x^{2}+4x-77}}
|
symmetry y=x^9
|
symmetry\:y=x^{9}
|
inverse of y=\sqrt[3]{x+2}-5
|
inverse\:y=\sqrt[3]{x+2}-5
|
asymptotes of arcsin(x)
|
asymptotes\:\arcsin(x)
|
perpendicular y= 3/4 x-2
|
perpendicular\:y=\frac{3}{4}x-2
|
domain of f(x)=x+sqrt(4-x^2)
|
domain\:f(x)=x+\sqrt{4-x^{2}}
|
inverse of \sqrt[3]{x-7}
|
inverse\:\sqrt[3]{x-7}
|
intercepts of f(x)=x^2-8x+12
|
intercepts\:f(x)=x^{2}-8x+12
|
domain of f(x)=(sqrt(x+8))/(x-1)
|
domain\:f(x)=\frac{\sqrt{x+8}}{x-1}
|
domain of 5x^2-2
|
domain\:5x^{2}-2
|
domain of sqrt((x^2-1)/(x^2+5x+6))
|
domain\:\sqrt{\frac{x^{2}-1}{x^{2}+5x+6}}
|
asymptotes of h(x)= 1/(x^2-1)
|
asymptotes\:h(x)=\frac{1}{x^{2}-1}
|
domain of sin(7x)
|
domain\:\sin(7x)
|
midpoint (11,13)(8,17)
|
midpoint\:(11,13)(8,17)
|
amplitude of y=2cos(2pi(x+(2pi)/3))-5
|
amplitude\:y=2\cos(2\pi(x+\frac{2\pi}{3}))-5
|
perpendicular 5x+2y=4
|
perpendicular\:5x+2y=4
|
inverse of f(x)=6x
|
inverse\:f(x)=6x
|
extreme points of f(x)=(x+3)^{6/7}
|
extreme\:points\:f(x)=(x+3)^{\frac{6}{7}}
|
domain of f(x)=sqrt(5-5x)
|
domain\:f(x)=\sqrt{5-5x}
|
inverse of f(x)=(x-6)/(-3x)
|
inverse\:f(x)=\frac{x-6}{-3x}
|
extreme points of f(x)=x^4-12x^3
|
extreme\:points\:f(x)=x^{4}-12x^{3}
|
asymptotes of f(x)=(4x)/(x^2-9)
|
asymptotes\:f(x)=\frac{4x}{x^{2}-9}
|
critical points of y=(9x-12)/(5x^{1/5)}
|
critical\:points\:y=\frac{9x-12}{5x^{\frac{1}{5}}}
|
range of (4x^2-4)/(x+4)
|
range\:\frac{4x^{2}-4}{x+4}
|
line (0,9),(4.5,0)
|
line\:(0,9),(4.5,0)
|
domain of f(x)=sqrt((x-4)/(2x-5))
|
domain\:f(x)=\sqrt{\frac{x-4}{2x-5}}
|
inverse of f(x)=42.82819x-20.43748
|
inverse\:f(x)=42.82819x-20.43748
|
asymptotes of f(x)=5csc(1/2 pi x+1/6 pi)
|
asymptotes\:f(x)=5\csc(\frac{1}{2}\pi\:x+\frac{1}{6}\pi)
|
domain of f(x)=x^2+5x+4
|
domain\:f(x)=x^{2}+5x+4
|
domain of xe^x
|
domain\:xe^{x}
|
range of sqrt(25-x^2),-5<= x< 5
|
range\:\sqrt{25-x^{2}},-5\le\:x\lt\:5
|
sqrt(x^2+1)
|
\sqrt{x^{2}+1}
|
inverse of pi+arcsin(2x-1)
|
inverse\:\pi+\arcsin(2x-1)
|
domain of f(x)=log_{2}(2-|1-x|)
|
domain\:f(x)=\log_{2}(2-|1-x|)
|
parity tan(arcos((sqrt(2))/2))
|
parity\:\tan(arcos(\frac{\sqrt{2}}{2}))
|
domain of f(x)=-|x-3|+2
|
domain\:f(x)=-|x-3|+2
|
domain of f(x)=\sqrt[4]{x}
|
domain\:f(x)=\sqrt[4]{x}
|
domain of (sqrt(4x-7))/(4x^2-15x+14)
|
domain\:\frac{\sqrt{4x-7}}{4x^{2}-15x+14}
|
domain of f(x)=(x^2-1)/(x-3)
|
domain\:f(x)=\frac{x^{2}-1}{x-3}
|
domain of f(x)=(2x+3)/(x-1)
|
domain\:f(x)=\frac{2x+3}{x-1}
|
inverse of f(x)=x^7-1
|
inverse\:f(x)=x^{7}-1
|
domain of (6x)/(x^2+2)
|
domain\:\frac{6x}{x^{2}+2}
|
critical points of f(x)=200x+500yy=40000
|
critical\:points\:f(x)=200x+500yy=40000
|
domain of f(x)= 3/(x^2-16)
|
domain\:f(x)=\frac{3}{x^{2}-16}
|
range of f(x)=7-sqrt(x)
|
range\:f(x)=7-\sqrt{x}
|
extreme points of f(x)=(x+2)^2(x-1)
|
extreme\:points\:f(x)=(x+2)^{2}(x-1)
|
domain of f(x)=(x^2)/(x^2+3)
|
domain\:f(x)=\frac{x^{2}}{x^{2}+3}
|
inflection points of (2x-1)/(x^2)
|
inflection\:points\:\frac{2x-1}{x^{2}}
|
inflection points of (x^2+x+1)/x
|
inflection\:points\:\frac{x^{2}+x+1}{x}
|
symmetry-2(x-6)^2-4
|
symmetry\:-2(x-6)^{2}-4
|
inverse of f(x)=(sqrt(2x-3))/5
|
inverse\:f(x)=\frac{\sqrt{2x-3}}{5}
|
inverse of f(x)=e^{2x-7}
|
inverse\:f(x)=e^{2x-7}
|
inverse of f(x)=11x^3-5
|
inverse\:f(x)=11x^{3}-5
|
parity f(x)=78
|
parity\:f(x)=78
|
asymptotes of arctan(x)
|
asymptotes\:\arctan(x)
|
shift f(t)=cos(1/2 t+(pi)/3)-(pi)/6
|
shift\:f(t)=\cos(\frac{1}{2}t+\frac{\pi}{3})-\frac{\pi}{6}
|
range of f(x)=csc(x)
|
range\:f(x)=\csc(x)
|
inverse of ln(e^x-3)
|
inverse\:\ln(e^{x}-3)
|
slope of (5,5)-1/4
|
slope\:(5,5)-1/4
|
intercepts of f(x)=y^2=8x+5
|
intercepts\:f(x)=y^{2}=8x+5
|
distance (-2,0)(1,1)
|
distance\:(-2,0)(1,1)
|
asymptotes of f(x)=(x^2-2x-15)/(x^2-4x-21)
|
asymptotes\:f(x)=\frac{x^{2}-2x-15}{x^{2}-4x-21}
|
parallel x+6y=-12
|
parallel\:x+6y=-12
|
inverse of f(x)=(3+2x)/(1-4x)
|
inverse\:f(x)=\frac{3+2x}{1-4x}
|
inverse of f(x)=((2x+3))/(x-1)
|
inverse\:f(x)=\frac{(2x+3)}{x-1}
|
amplitude of sin(2x-pi)
|
amplitude\:\sin(2x-\pi)
|
asymptotes of f(x)=(x^3+8)/(x^2+7x)
|
asymptotes\:f(x)=\frac{x^{3}+8}{x^{2}+7x}
|
midpoint (9,-3)(-2,-2)
|
midpoint\:(9,-3)(-2,-2)
|
parity 2x^2-x-1
|
parity\:2x^{2}-x-1
|
domain of sqrt(2-x/(x-3))
|
domain\:\sqrt{2-\frac{x}{x-3}}
|
asymptotes of f(x)=(x^2-49)/(x(x-7))
|
asymptotes\:f(x)=\frac{x^{2}-49}{x(x-7)}
|
domain of f(x)=x^2+8x
|
domain\:f(x)=x^{2}+8x
|
inverse of y=4x-3
|
inverse\:y=4x-3
|
range of sin(6x),0<= x<= 2pi
|
range\:\sin(6x),0\le\:x\le\:2\pi
|
extreme points of x^2-6x+8
|
extreme\:points\:x^{2}-6x+8
|
midpoint (5,-7)(8,1)
|
midpoint\:(5,-7)(8,1)
|
intercepts of-x^2-3x+4
|
intercepts\:-x^{2}-3x+4
|
domain of f(x)=-3x^2+6x+4
|
domain\:f(x)=-3x^{2}+6x+4
|
intercepts of f(x)=2(x-6)^2+2
|
intercepts\:f(x)=2(x-6)^{2}+2
|
domain of f(x)=(sqrt(x))/(5x^2+4x-1)
|
domain\:f(x)=\frac{\sqrt{x}}{5x^{2}+4x-1}
|
asymptotes of ln(x+1)
|
asymptotes\:\ln(x+1)
|
midpoint (6,1)(-2,-5)
|
midpoint\:(6,1)(-2,-5)
|
domain of f(x)= x/(x^2-x-6)
|
domain\:f(x)=\frac{x}{x^{2}-x-6}
|