line (-6,4),(-5,-10)
|
line\:(-6,4),(-5,-10)
|
range of y=6x^2+2x-4
|
range\:y=6x^{2}+2x-4
|
intercepts of f(x)=x^4-7x^3+6x^2+19x+5
|
intercepts\:f(x)=x^{4}-7x^{3}+6x^{2}+19x+5
|
inflection points of 1/(x^2-1)
|
inflection\:points\:\frac{1}{x^{2}-1}
|
inverse of f(x)=27x^3-1
|
inverse\:f(x)=27x^{3}-1
|
inverse of f(x)=x^2-10
|
inverse\:f(x)=x^{2}-10
|
inverse of 4/x
|
inverse\:\frac{4}{x}
|
domain of f(x)=sqrt(5-9x)
|
domain\:f(x)=\sqrt{5-9x}
|
asymptotes of f(x)=(x^2)/(x-8)
|
asymptotes\:f(x)=\frac{x^{2}}{x-8}
|
asymptotes of f(x)=(x^2-9x-10)/(2x+2)
|
asymptotes\:f(x)=\frac{x^{2}-9x-10}{2x+2}
|
inflection points of f(x)=(x+2)^2(x+1)
|
inflection\:points\:f(x)=(x+2)^{2}(x+1)
|
shift 1/2 cos(2x)
|
shift\:\frac{1}{2}\cos(2x)
|
domain of f(x)=(5x-3)/(5x)
|
domain\:f(x)=\frac{5x-3}{5x}
|
inverse of f(x)=2(x-2)^2
|
inverse\:f(x)=2(x-2)^{2}
|
inverse of g(x)=x-2
|
inverse\:g(x)=x-2
|
line (2,0),(0,-3)
|
line\:(2,0),(0,-3)
|
asymptotes of (x^2-1)/x
|
asymptotes\:\frac{x^{2}-1}{x}
|
domain of f(x)=sqrt(x2+4)+4x-4
|
domain\:f(x)=\sqrt{x2+4}+4x-4
|
inverse of x^2+1,x>= 0
|
inverse\:x^{2}+1,x\ge\:0
|
asymptotes of ln(e+1/x)
|
asymptotes\:\ln(e+\frac{1}{x})
|
inverse of f(x)=(1+9x)/(5-4x)
|
inverse\:f(x)=\frac{1+9x}{5-4x}
|
domain of f(x)= 2/(64-x^2)
|
domain\:f(x)=\frac{2}{64-x^{2}}
|
intercepts of f(x)=2x^3-2
|
intercepts\:f(x)=2x^{3}-2
|
inverse of f(x)=9x-2
|
inverse\:f(x)=9x-2
|
parity f(x)=x^2|x|+6
|
parity\:f(x)=x^{2}|x|+6
|
intercepts of (-4x-16)/(x^2-x-20)
|
intercepts\:\frac{-4x-16}{x^{2}-x-20}
|
slope intercept of x-2y=8
|
slope\:intercept\:x-2y=8
|
midpoint (9,1)(10,-3)
|
midpoint\:(9,1)(10,-3)
|
inflection points of f(x)= x/(x^2+25)
|
inflection\:points\:f(x)=\frac{x}{x^{2}+25}
|
range of f(x)=2x-x^2+8
|
range\:f(x)=2x-x^{2}+8
|
midpoint (-5,4)(7,2)
|
midpoint\:(-5,4)(7,2)
|
slope of f(x)=2x
|
slope\:f(x)=2x
|
intercepts of f(x)=2x^2-9x-5
|
intercepts\:f(x)=2x^{2}-9x-5
|
inverse of f(x)=(x-1)^3+4
|
inverse\:f(x)=(x-1)^{3}+4
|
range of f(x)=x^2+6
|
range\:f(x)=x^{2}+6
|
domain of f(x)=(3x)/(x^2+2)
|
domain\:f(x)=\frac{3x}{x^{2}+2}
|
range of f(x)=x+7
|
range\:f(x)=x+7
|
inverse of f(x)=(x+1)/(x-2)
|
inverse\:f(x)=\frac{x+1}{x-2}
|
inverse of y=6x^2-4
|
inverse\:y=6x^{2}-4
|
symmetry y=(-1)/x
|
symmetry\:y=\frac{-1}{x}
|
inverse of x^{3/5}
|
inverse\:x^{\frac{3}{5}}
|
periodicity of 4sin(x)
|
periodicity\:4\sin(x)
|
inflection points of f(x)=(3x^2)/(5+x^2)
|
inflection\:points\:f(x)=\frac{3x^{2}}{5+x^{2}}
|
domain of f(x)=(4x^2+1)/(2x)
|
domain\:f(x)=\frac{4x^{2}+1}{2x}
|
distance (3,3),(2,-2)
|
distance\:(3,3),(2,-2)
|
extreme points of f(x)=3x-ln(3x)
|
extreme\:points\:f(x)=3x-\ln(3x)
|
domain of (x^2-16)/(x^2-1)
|
domain\:\frac{x^{2}-16}{x^{2}-1}
|
domain of f(x)= x/(x^2+4)
|
domain\:f(x)=\frac{x}{x^{2}+4}
|
asymptotes of f(x)=(x^2-5x+10)/(x+5)
|
asymptotes\:f(x)=\frac{x^{2}-5x+10}{x+5}
|
inverse of 10cos(6x)+2
|
inverse\:10\cos(6x)+2
|
domain of f(x)=(2x-1)/(x-4)
|
domain\:f(x)=\frac{2x-1}{x-4}
|
domain of f(x)= x/(sqrt(x-8))
|
domain\:f(x)=\frac{x}{\sqrt{x-8}}
|
domain of \sqrt[3]{3x-9}
|
domain\:\sqrt[3]{3x-9}
|
domain of f(x)=(x-8)/(x^2-64)
|
domain\:f(x)=\frac{x-8}{x^{2}-64}
|
intercepts of f(x)=150(1.73)^x
|
intercepts\:f(x)=150(1.73)^{x}
|
inverse of f(x)=-3x+3
|
inverse\:f(x)=-3x+3
|
domain of (\frac{x-3)/(x-7)}{sqrt(x+8)}
|
domain\:\frac{\frac{x-3}{x-7}}{\sqrt{x+8}}
|
asymptotes of f(x)=(x+2)/(1+x^2+x)
|
asymptotes\:f(x)=\frac{x+2}{1+x^{2}+x}
|
inverse of 46
|
inverse\:46
|
critical points of f(x)=2x^3+3x^2-12x-7
|
critical\:points\:f(x)=2x^{3}+3x^{2}-12x-7
|
parity f(x)=sqrt(1-x^2)
|
parity\:f(x)=\sqrt{1-x^{2}}
|
asymptotes of 1/(x^2-25)
|
asymptotes\:\frac{1}{x^{2}-25}
|
asymptotes of (2x-8)/(x^2-9x+20)
|
asymptotes\:\frac{2x-8}{x^{2}-9x+20}
|
parity f(x)=2x^3
|
parity\:f(x)=2x^{3}
|
asymptotes of f(x)=((2x^2-3))/(x+2)
|
asymptotes\:f(x)=\frac{(2x^{2}-3)}{x+2}
|
domain of f(x)=x+ln(x^2-1)
|
domain\:f(x)=x+\ln(x^{2}-1)
|
extreme points of (xsqrt(x+1))
|
extreme\:points\:(x\sqrt{x+1})
|
inverse of f(x)=e^{x-2}
|
inverse\:f(x)=e^{x-2}
|
domain of f(x)=sqrt(-2x+4)
|
domain\:f(x)=\sqrt{-2x+4}
|
perpendicular x=-1
|
perpendicular\:x=-1
|
intercepts of (x-3)^8(x+5)^6(14-13x)
|
intercepts\:(x-3)^{8}(x+5)^{6}(14-13x)
|
inverse of f(x)= 4/((x-3)^2)
|
inverse\:f(x)=\frac{4}{(x-3)^{2}}
|
domain of f(x)=sqrt((x^3+1)/x)
|
domain\:f(x)=\sqrt{\frac{x^{3}+1}{x}}
|
inverse of f(x)=sqrt(5-x)+1
|
inverse\:f(x)=\sqrt{5-x}+1
|
asymptotes of f(x)=(10)/(x^2-25)
|
asymptotes\:f(x)=\frac{10}{x^{2}-25}
|
midpoint (-9,4)(-2,7)
|
midpoint\:(-9,4)(-2,7)
|
inverse of f(x)=sqrt(2+5x)
|
inverse\:f(x)=\sqrt{2+5x}
|
inverse of f(x)=2e^{2x+1}
|
inverse\:f(x)=2e^{2x+1}
|
range of |x|
|
range\:|x|
|
inverse of f(x)=sqrt(8x+6)
|
inverse\:f(x)=\sqrt{8x+6}
|
line (-2,1),(-1,1)
|
line\:(-2,1),(-1,1)
|
parallel y= 7/3 x+3
|
parallel\:y=\frac{7}{3}x+3
|
domain of f(x)=3sqrt(-x-1)-5
|
domain\:f(x)=3\sqrt{-x-1}-5
|
asymptotes of 2x-3
|
asymptotes\:2x-3
|
slope intercept of y= 7/10 x+4/5
|
slope\:intercept\:y=\frac{7}{10}x+\frac{4}{5}
|
inverse of-5cos(2x)
|
inverse\:-5\cos(2x)
|
inverse of f(x)=3-\sqrt[3]{x-2}
|
inverse\:f(x)=3-\sqrt[3]{x-2}
|
line m=2,\at (0,0)
|
line\:m=2,\at\:(0,0)
|
asymptotes of f(x)=(x+1)/(x-2)
|
asymptotes\:f(x)=\frac{x+1}{x-2}
|
perpendicular y=-x+15,\at (-9,8)
|
perpendicular\:y=-x+15,\at\:(-9,8)
|
slope of y=4x-6
|
slope\:y=4x-6
|
parity f(x)=(3x+x^3+4)/(-5x^3-2x^2+5)
|
parity\:f(x)=\frac{3x+x^{3}+4}{-5x^{3}-2x^{2}+5}
|
domain of f(x)=x^{1/4}
|
domain\:f(x)=x^{\frac{1}{4}}
|
domain of f(x)=y=sqrt(x-9)
|
domain\:f(x)=y=\sqrt{x-9}
|
asymptotes of (4x^4)/(2x^2-3)
|
asymptotes\:\frac{4x^{4}}{2x^{2}-3}
|
inverse of f(x)=(x+4)/3
|
inverse\:f(x)=\frac{x+4}{3}
|
inverse of f(x)=-1/(x+2)
|
inverse\:f(x)=-\frac{1}{x+2}
|
line (2,11)(-1,2)
|
line\:(2,11)(-1,2)
|
extreme points of f(x)=5sin(5x)
|
extreme\:points\:f(x)=5\sin(5x)
|
intercepts of f(x)=4x^2+4y=16
|
intercepts\:f(x)=4x^{2}+4y=16
|