parity (3x^2-2)/(x^3-2x-8)
|
parity\:\frac{3x^{2}-2}{x^{3}-2x-8}
|
symmetry y=x^2-4x
|
symmetry\:y=x^{2}-4x
|
critical points of (x^3-1)/(x^2)
|
critical\:points\:\frac{x^{3}-1}{x^{2}}
|
inverse of f(x)=ln(x^2-1)+1
|
inverse\:f(x)=\ln(x^{2}-1)+1
|
slope intercept of 5x+2y=14
|
slope\:intercept\:5x+2y=14
|
asymptotes of f(x)=(2e^x)/(e^x-5)
|
asymptotes\:f(x)=\frac{2e^{x}}{e^{x}-5}
|
critical points of f(x)=((x^3))/(x^2-1)
|
critical\:points\:f(x)=\frac{(x^{3})}{x^{2}-1}
|
asymptotes of (x^2-25)/(-2x^2-10x)
|
asymptotes\:\frac{x^{2}-25}{-2x^{2}-10x}
|
asymptotes of (-1)/(x^2-2x+1)
|
asymptotes\:\frac{-1}{x^{2}-2x+1}
|
domain of (5-2x)/(6x+3)
|
domain\:\frac{5-2x}{6x+3}
|
domain of y=log_{a}(x)
|
domain\:y=\log_{a}(x)
|
domain of f(x)=5sqrt(x)+1
|
domain\:f(x)=5\sqrt{x}+1
|
inverse of f(x)=4+sqrt(3x-2)
|
inverse\:f(x)=4+\sqrt{3x-2}
|
monotone intervals =x^3-11x^2+39x-47
|
monotone\:intervals\:=x^{3}-11x^{2}+39x-47
|
domain of f(x)=2x+2
|
domain\:f(x)=2x+2
|
asymptotes of (x^2-2x-35)/(x^2-16)
|
asymptotes\:\frac{x^{2}-2x-35}{x^{2}-16}
|
domain of f(x)=log_{2}(x^2-7*x+12)
|
domain\:f(x)=\log_{2}(x^{2}-7\cdot\:x+12)
|
domain of f(x)=x^2
|
domain\:f(x)=x^{2}
|
midpoint (1,5)(9,3)
|
midpoint\:(1,5)(9,3)
|
inverse of f(x)=-1/2 sqrt(x+3)
|
inverse\:f(x)=-\frac{1}{2}\sqrt{x+3}
|
symmetry x^2-y^2=9
|
symmetry\:x^{2}-y^{2}=9
|
extreme points of f(x)=-3x^2+18x+16
|
extreme\:points\:f(x)=-3x^{2}+18x+16
|
inverse of f(x)= 9/(x-7)
|
inverse\:f(x)=\frac{9}{x-7}
|
inverse of f(x)=y=x-1
|
inverse\:f(x)=y=x-1
|
domain of f(x)=(x-6)/(x^2-36)
|
domain\:f(x)=\frac{x-6}{x^{2}-36}
|
intercepts of-4y=-40
|
intercepts\:-4y=-40
|
critical points of f(x)=x^4-8x^3
|
critical\:points\:f(x)=x^{4}-8x^{3}
|
extreme points of f(x)=6x^2-2x^3
|
extreme\:points\:f(x)=6x^{2}-2x^{3}
|
extreme points of f(x)= x/(x^2+11x+28)
|
extreme\:points\:f(x)=\frac{x}{x^{2}+11x+28}
|
midpoint (0,2)(8,8)
|
midpoint\:(0,2)(8,8)
|
domain of f(x)=sqrt(x-2)+5
|
domain\:f(x)=\sqrt{x-2}+5
|
inflection points of \sqrt[3]{x^2}
|
inflection\:points\:\sqrt[3]{x^{2}}
|
parity y=csc(theta)(theta+cot(theta))
|
parity\:y=\csc(\theta)(\theta+\cot(\theta))
|
inverse of y=e^x-e^{-x}
|
inverse\:y=e^{x}-e^{-x}
|
slope of 3y=4x+5
|
slope\:3y=4x+5
|
domain of f(x)=2x^2-12x+18
|
domain\:f(x)=2x^{2}-12x+18
|
inverse of f(x)=8x-5
|
inverse\:f(x)=8x-5
|
domain of sqrt(-x^2-3x+4)
|
domain\:\sqrt{-x^{2}-3x+4}
|
domain of f(x)=(11)/(11-x)
|
domain\:f(x)=\frac{11}{11-x}
|
domain of 6x+1
|
domain\:6x+1
|
asymptotes of f(x)=3x^2-x^2+4x-6y-13=0
|
asymptotes\:f(x)=3x^{2}-x^{2}+4x-6y-13=0
|
monotone intervals 8/(xsqrt(x^2-4))
|
monotone\:intervals\:\frac{8}{x\sqrt{x^{2}-4}}
|
domain of f(x)=4-x^2
|
domain\:f(x)=4-x^{2}
|
domain of (2x+11)/(3x+19)
|
domain\:\frac{2x+11}{3x+19}
|
line 2x-3y= 7/5
|
line\:2x-3y=\frac{7}{5}
|
inverse of f(x)=sqrt(x^2+7x)
|
inverse\:f(x)=\sqrt{x^{2}+7x}
|
domain of f(x)=-3x^2+4x-3
|
domain\:f(x)=-3x^{2}+4x-3
|
inverse of f(x)= 4/(11-2x)
|
inverse\:f(x)=\frac{4}{11-2x}
|
asymptotes of sqrt(3)-tan(x/2+(pi)/3)
|
asymptotes\:\sqrt{3}-\tan(\frac{x}{2}+\frac{\pi}{3})
|
range of f(x)=-sqrt(9-x^2)
|
range\:f(x)=-\sqrt{9-x^{2}}
|
domain of f(x)=sqrt(x^2-72)
|
domain\:f(x)=\sqrt{x^{2}-72}
|
inverse of f(x)= x/4+7
|
inverse\:f(x)=\frac{x}{4}+7
|
domain of f(x)=sqrt(x/(x+1))
|
domain\:f(x)=\sqrt{\frac{x}{x+1}}
|
inverse of f(x)=(2x+5)/(7+x)
|
inverse\:f(x)=\frac{2x+5}{7+x}
|
inflection points of-x^6+42x^5-42x+17
|
inflection\:points\:-x^{6}+42x^{5}-42x+17
|
distance (4,2)(0,4)
|
distance\:(4,2)(0,4)
|
asymptotes of (x^2-81)/(x^3+7x^2-18x)
|
asymptotes\:\frac{x^{2}-81}{x^{3}+7x^{2}-18x}
|
domain of (sqrt(5x))/(7x-2)
|
domain\:\frac{\sqrt{5x}}{7x-2}
|
critical points of (x^2)/(x^2+3)
|
critical\:points\:\frac{x^{2}}{x^{2}+3}
|
inverse of f(x)=6x^4
|
inverse\:f(x)=6x^{4}
|
inverse of f(x)= 1/2 (x-1)^2-5
|
inverse\:f(x)=\frac{1}{2}(x-1)^{2}-5
|
line (1,8)(-2,5)
|
line\:(1,8)(-2,5)
|
midpoint (4,3)(-1,-3)
|
midpoint\:(4,3)(-1,-3)
|
slope of 15x-5y=70
|
slope\:15x-5y=70
|
parallel y+6=-1/2 (x+8),\at (-5,3)
|
parallel\:y+6=-\frac{1}{2}(x+8),\at\:(-5,3)
|
inverse of f(x)=xsqrt(4-x^2)
|
inverse\:f(x)=x\sqrt{4-x^{2}}
|
inverse of f(x)=2x+14
|
inverse\:f(x)=2x+14
|
inverse of f(x)=sqrt(2-x)+4
|
inverse\:f(x)=\sqrt{2-x}+4
|
slope of 2x-3y-6=0
|
slope\:2x-3y-6=0
|
range of f(x)=-4x^2-8x-6
|
range\:f(x)=-4x^{2}-8x-6
|
midpoint (0,0)(3,4)
|
midpoint\:(0,0)(3,4)
|
inverse of f(x)=e^{3x}
|
inverse\:f(x)=e^{3x}
|
range of (e^{-x})/((1+e^{-x))^2}
|
range\:\frac{e^{-x}}{(1+e^{-x})^{2}}
|
inverse of 2x+24
|
inverse\:2x+24
|
domain of f(x)=(6-x)/(x+7)
|
domain\:f(x)=\frac{6-x}{x+7}
|
inflection points of f(x)=(7-2x)e^x
|
inflection\:points\:f(x)=(7-2x)e^{x}
|
slope intercept of 5x-4y=12
|
slope\:intercept\:5x-4y=12
|
domain of e^x+4
|
domain\:e^{x}+4
|
domain of f(x)=sqrt(5x-1)
|
domain\:f(x)=\sqrt{5x-1}
|
slope of 2x+3y=4
|
slope\:2x+3y=4
|
periodicity of f(x)=-5cos(4x)
|
periodicity\:f(x)=-5\cos(4x)
|
inverse of f(x)=3^x-2
|
inverse\:f(x)=3^{x}-2
|
domain of f(x)= 7/(3+e^x)
|
domain\:f(x)=\frac{7}{3+e^{x}}
|
domain of f(x)=sqrt(2x^2+x-3)
|
domain\:f(x)=\sqrt{2x^{2}+x-3}
|
domain of 24^{-x}+8
|
domain\:24^{-x}+8
|
domain of (x+2)/(x^2-16)
|
domain\:\frac{x+2}{x^{2}-16}
|
critical points of-2x^3-6x^2+18x+1
|
critical\:points\:-2x^{3}-6x^{2}+18x+1
|
parity f(x)=11
|
parity\:f(x)=11
|
slope of y=2x+2
|
slope\:y=2x+2
|
domain of f(y)=2x+b
|
domain\:f(y)=2x+b
|
domain of f(x)=x^2-6x+9
|
domain\:f(x)=x^{2}-6x+9
|
extreme points of x^3-4x^2-16x+9
|
extreme\:points\:x^{3}-4x^{2}-16x+9
|
symmetry 2x^2-6x+3
|
symmetry\:2x^{2}-6x+3
|
intercepts of f(x)=2(x-1)^2-8
|
intercepts\:f(x)=2(x-1)^{2}-8
|
parallel 5x+7y=8
|
parallel\:5x+7y=8
|
domain of (x+2)e^{1/x}
|
domain\:(x+2)e^{\frac{1}{x}}
|
domain of h(x)=sqrt(x^2-9)
|
domain\:h(x)=\sqrt{x^{2}-9}
|
asymptotes of f(x)=(x^2+x)/(-x^2+4x)
|
asymptotes\:f(x)=\frac{x^{2}+x}{-x^{2}+4x}
|
x^2+3x+4
|
x^{2}+3x+4
|
inverse of y=x+3
|
inverse\:y=x+3
|