critical points of f(x)=2.1+4.4x-0.7x^2
|
critical\:points\:f(x)=2.1+4.4x-0.7x^{2}
|
extreme points of f(x)=-x^3+3x^2-1
|
extreme\:points\:f(x)=-x^{3}+3x^{2}-1
|
inverse of f(x)= 2/(3x)-4
|
inverse\:f(x)=\frac{2}{3x}-4
|
periodicity of sin(1/x)
|
periodicity\:\sin(\frac{1}{x})
|
midpoint (-4,-2)(2,2)
|
midpoint\:(-4,-2)(2,2)
|
asymptotes of f(x)=(\sqrt[3]{3x-5x})^2
|
asymptotes\:f(x)=(\sqrt[3]{3x-5x})^{2}
|
asymptotes of f(x)= 1/(x-4)-3
|
asymptotes\:f(x)=\frac{1}{x-4}-3
|
inverse of (9-2x)/(5x)
|
inverse\:\frac{9-2x}{5x}
|
inverse of f(x)=5cos(11x)+9
|
inverse\:f(x)=5\cos(11x)+9
|
domain of f(x)=-16x^2+64x+80
|
domain\:f(x)=-16x^{2}+64x+80
|
2x
|
2x
|
inflection points of 2x^3+9x^2+54x+27
|
inflection\:points\:2x^{3}+9x^{2}+54x+27
|
parity f(x)=7csc(x^2)
|
parity\:f(x)=7\csc(x^{2})
|
domain of f(x)=sqrt(5-x)+sqrt(x^2-9)
|
domain\:f(x)=\sqrt{5-x}+\sqrt{x^{2}-9}
|
extreme points of 13x(x-1)^3
|
extreme\:points\:13x(x-1)^{3}
|
domain of f(x)=(sqrt(2x+7))/(x-1)
|
domain\:f(x)=\frac{\sqrt{2x+7}}{x-1}
|
symmetry y=x^2+1
|
symmetry\:y=x^{2}+1
|
range of (2x^2-3)/5
|
range\:\frac{2x^{2}-3}{5}
|
domain of x/(4x+9)
|
domain\:\frac{x}{4x+9}
|
range of f(x)= 2/(t^2-9)
|
range\:f(x)=\frac{2}{t^{2}-9}
|
critical points of x^4-3x^2-4
|
critical\:points\:x^{4}-3x^{2}-4
|
inverse of f(x)=2^{x^5-1}
|
inverse\:f(x)=2^{x^{5}-1}
|
inverse of-4x^5-4
|
inverse\:-4x^{5}-4
|
midpoint (-18,-20)(-13,-15)
|
midpoint\:(-18,-20)(-13,-15)
|
domain of (2x)/(x^2-1)
|
domain\:\frac{2x}{x^{2}-1}
|
domain of 3sqrt(x+1)
|
domain\:3\sqrt{x+1}
|
perpendicular y=2x-1,\at (1,3)
|
perpendicular\:y=2x-1,\at\:(1,3)
|
asymptotes of f(x)=(1+x)/((4+x)^2)
|
asymptotes\:f(x)=\frac{1+x}{(4+x)^{2}}
|
asymptotes of (x^2-3x)/((x-2)^2)
|
asymptotes\:\frac{x^{2}-3x}{(x-2)^{2}}
|
critical points of 2x^3-3x^2
|
critical\:points\:2x^{3}-3x^{2}
|
domain of (x^2)/(x^2-1)
|
domain\:\frac{x^{2}}{x^{2}-1}
|
domain of f(x)=-5x+3
|
domain\:f(x)=-5x+3
|
inverse of f(x)=x-2(1/2)
|
inverse\:f(x)=x-2(\frac{1}{2})
|
distance (2,1),(9,0)
|
distance\:(2,1),(9,0)
|
domain of f(x)=((3x-7))/((x+1))
|
domain\:f(x)=\frac{(3x-7)}{(x+1)}
|
domain of (x-4)/8
|
domain\:\frac{x-4}{8}
|
range of (x^2-16)/(4x^2)
|
range\:\frac{x^{2}-16}{4x^{2}}
|
midpoint (5,3i)(1,i)
|
midpoint\:(5,3i)(1,i)
|
asymptotes of f(x)= 4/(x-4)
|
asymptotes\:f(x)=\frac{4}{x-4}
|
slope of 3x+y=1
|
slope\:3x+y=1
|
inverse of f(x)=(10-x)/5
|
inverse\:f(x)=\frac{10-x}{5}
|
domain of f(x)=x^4+10x^3+30x^2+25x
|
domain\:f(x)=x^{4}+10x^{3}+30x^{2}+25x
|
domain of x/(3x+4)
|
domain\:\frac{x}{3x+4}
|
domain of f(x)=e^{-x}-3
|
domain\:f(x)=e^{-x}-3
|
line y=-6/5 x+3/5
|
line\:y=-\frac{6}{5}x+\frac{3}{5}
|
inverse of f(x)=8x+11
|
inverse\:f(x)=8x+11
|
domain of f(x)=(3x)/(x+2)
|
domain\:f(x)=\frac{3x}{x+2}
|
inverse of f(x)=(x-1)^3
|
inverse\:f(x)=(x-1)^{3}
|
domain of-sqrt(-(x+3)/(16))-7
|
domain\:-\sqrt{-\frac{x+3}{16}}-7
|
critical points of f(x)=ln(x-7)
|
critical\:points\:f(x)=\ln(x-7)
|
domain of f(x)=x^2-9x-5
|
domain\:f(x)=x^{2}-9x-5
|
asymptotes of (x-5)/(x-2)
|
asymptotes\:\frac{x-5}{x-2}
|
inverse of 2x^2-4x
|
inverse\:2x^{2}-4x
|
domain of f(x)= 2/(sqrt(3-2x))
|
domain\:f(x)=\frac{2}{\sqrt{3-2x}}
|
domain of f(x)=x+13
|
domain\:f(x)=x+13
|
inverse of f(x)= 1/2 x-7/2
|
inverse\:f(x)=\frac{1}{2}x-\frac{7}{2}
|
domain of 2/(x+4)
|
domain\:\frac{2}{x+4}
|
slope of 2x+3y=3
|
slope\:2x+3y=3
|
domain of f(x)=sqrt(x-13)
|
domain\:f(x)=\sqrt{x-13}
|
domain of f(x)=(|x-3|)/(x-3)
|
domain\:f(x)=\frac{|x-3|}{x-3}
|
inverse of f(x)= 1/5 x-4
|
inverse\:f(x)=\frac{1}{5}x-4
|
inflection points of f(x)=3x^3-36x
|
inflection\:points\:f(x)=3x^{3}-36x
|
asymptotes of f(x)=(3x-1)/(3x+9)
|
asymptotes\:f(x)=\frac{3x-1}{3x+9}
|
inflection points of x^4-4x^3
|
inflection\:points\:x^{4}-4x^{3}
|
distance (8,3)(7,-3)
|
distance\:(8,3)(7,-3)
|
domain of f(x)=log_{2}(3-|3-x|)
|
domain\:f(x)=\log_{2}(3-|3-x|)
|
symmetry f(x)=x^2-17
|
symmetry\:f(x)=x^{2}-17
|
asymptotes of y=(2x^2-2)/(x^2+3x-4)
|
asymptotes\:y=\frac{2x^{2}-2}{x^{2}+3x-4}
|
inverse of 4x^2+9
|
inverse\:4x^{2}+9
|
slope of y=11x+15
|
slope\:y=11x+15
|
domain of y= 1/(x+2)
|
domain\:y=\frac{1}{x+2}
|
asymptotes of f(x)= 1/(x^2)-3
|
asymptotes\:f(x)=\frac{1}{x^{2}}-3
|
inflection points of f(x)=(e^x)/(3+e^x)
|
inflection\:points\:f(x)=\frac{e^{x}}{3+e^{x}}
|
domain of x/(x^2+4)
|
domain\:\frac{x}{x^{2}+4}
|
line (2,3)(-1,5)
|
line\:(2,3)(-1,5)
|
intercepts of f(x)=-(x+2)^2+3
|
intercepts\:f(x)=-(x+2)^{2}+3
|
midpoint (0,0)(12,5)
|
midpoint\:(0,0)(12,5)
|
critical points of f(x)=(sqrt(1-x^2))/x
|
critical\:points\:f(x)=\frac{\sqrt{1-x^{2}}}{x}
|
inverse of (x-1)^3+2
|
inverse\:(x-1)^{3}+2
|
asymptotes of (x^3+x^2-6x)/(4x^2+4x-8)
|
asymptotes\:\frac{x^{3}+x^{2}-6x}{4x^{2}+4x-8}
|
extreme points of f(x)=sqrt(x-4)
|
extreme\:points\:f(x)=\sqrt{x-4}
|
symmetry x^3-x
|
symmetry\:x^{3}-x
|
distance (-8,0)(5,-7)
|
distance\:(-8,0)(5,-7)
|
domain of f(x)=(x-4)/(x^2-2x-8)
|
domain\:f(x)=\frac{x-4}{x^{2}-2x-8}
|
intercepts of x^4+62x^2+128x+65
|
intercepts\:x^{4}+62x^{2}+128x+65
|
slope of y+2=-1/5 (x+1)
|
slope\:y+2=-\frac{1}{5}(x+1)
|
inverse of f(x)=e^{(2x)/(2x^2-1)}
|
inverse\:f(x)=e^{\frac{2x}{2x^{2}-1}}
|
domain of f(x)=(2x^2)/(1-x^2)
|
domain\:f(x)=\frac{2x^{2}}{1-x^{2}}
|
domain of x^2-10x+23
|
domain\:x^{2}-10x+23
|
line (4,-1),(-1,-4)
|
line\:(4,-1),(-1,-4)
|
domain of ln(1-x)
|
domain\:\ln(1-x)
|
domain of sqrt(2+5x)
|
domain\:\sqrt{2+5x}
|
domain of f(x)=((x+9)(x-9))/(x^2+81)
|
domain\:f(x)=\frac{(x+9)(x-9)}{x^{2}+81}
|
asymptotes of (-3x^2-12x-9)/(x^2+5x+4)
|
asymptotes\:\frac{-3x^{2}-12x-9}{x^{2}+5x+4}
|
inverse of f(x)=-2x^3-3
|
inverse\:f(x)=-2x^{3}-3
|
extreme points of f(x)=x^2-1,-1<= x<= 2
|
extreme\:points\:f(x)=x^{2}-1,-1\le\:x\le\:2
|
domain of (3x+6)/(x^2-x-2)
|
domain\:\frac{3x+6}{x^{2}-x-2}
|
parity 2cos(x)
|
parity\:2\cos(x)
|
domain of f(x)=sqrt(\sqrt{6)+2}
|
domain\:f(x)=\sqrt{\sqrt{6}+2}
|
inverse of 8x+4
|
inverse\:8x+4
|