asymptotes of 9/(x^2-16)
|
asymptotes\:\frac{9}{x^{2}-16}
|
midpoint (-2,-1)(-8,6)
|
midpoint\:(-2,-1)(-8,6)
|
asymptotes of f(x)=(2-x^2)/(x^2+x)
|
asymptotes\:f(x)=\frac{2-x^{2}}{x^{2}+x}
|
line (0,9),(0.9,2)
|
line\:(0,9),(0.9,2)
|
line (0.1,4),(1,6)
|
line\:(0.1,4),(1,6)
|
inverse of f(x)=31x-26
|
inverse\:f(x)=31x-26
|
domain of f(x)= 8/(16-x^2)
|
domain\:f(x)=\frac{8}{16-x^{2}}
|
inverse of 2x-5
|
inverse\:2x-5
|
critical points of x^3-12x^2-27x+8
|
critical\:points\:x^{3}-12x^{2}-27x+8
|
asymptotes of x^4-2x^3
|
asymptotes\:x^{4}-2x^{3}
|
symmetry 2^x
|
symmetry\:2^{x}
|
extreme points of f(x)=((x-3)^2)/(x-5)
|
extreme\:points\:f(x)=\frac{(x-3)^{2}}{x-5}
|
domain of f(x)=x^2+x+1
|
domain\:f(x)=x^{2}+x+1
|
asymptotes of f(x)= 1/((x+1)(x+2))
|
asymptotes\:f(x)=\frac{1}{(x+1)(x+2)}
|
intercepts of f(x)=4x-2
|
intercepts\:f(x)=4x-2
|
parallel y=-2/3+5
|
parallel\:y=-\frac{2}{3}+5
|
extreme points of f(x)=27x^3-9x+1
|
extreme\:points\:f(x)=27x^{3}-9x+1
|
monotone intervals f(x)=x^3-3x-2
|
monotone\:intervals\:f(x)=x^{3}-3x-2
|
asymptotes of f(x)=(3x+12)/(-12x+4)
|
asymptotes\:f(x)=\frac{3x+12}{-12x+4}
|
domain of f(x)=(sqrt(7x+2))/(x^2-5x+6)
|
domain\:f(x)=\frac{\sqrt{7x+2}}{x^{2}-5x+6}
|
domain of f(x)=3x-3
|
domain\:f(x)=3x-3
|
asymptotes of 4^x
|
asymptotes\:4^{x}
|
inverse of (x+7)^3-2
|
inverse\:(x+7)^{3}-2
|
parity f(x)=-x^3+5x-2
|
parity\:f(x)=-x^{3}+5x-2
|
slope intercept of y-2x=0
|
slope\:intercept\:y-2x=0
|
parallel y=2x-3
|
parallel\:y=2x-3
|
range of-5/6 sin(x)
|
range\:-\frac{5}{6}\sin(x)
|
intercepts of f(x)=-x^2+2x+1
|
intercepts\:f(x)=-x^{2}+2x+1
|
asymptotes of (3x^2+x-10)/(5x^2-27x+10)
|
asymptotes\:\frac{3x^{2}+x-10}{5x^{2}-27x+10}
|
domain of sqrt(-x-3)
|
domain\:\sqrt{-x-3}
|
asymptotes of (-x^2-5x+2)/(x+3)
|
asymptotes\:\frac{-x^{2}-5x+2}{x+3}
|
global extreme points of X^3
|
global\:extreme\:points\:X^{3}
|
line (5,)(3,)
|
line\:(5,)(3,)
|
inverse of ln((-x+2)/(x+2))
|
inverse\:\ln(\frac{-x+2}{x+2})
|
domain of-sqrt(4-x^2)
|
domain\:-\sqrt{4-x^{2}}
|
domain of x+1/x
|
domain\:x+\frac{1}{x}
|
midpoint (3,2)(8,15)
|
midpoint\:(3,2)(8,15)
|
critical points of f(x)= 1/5 x^4-3/4 x^4
|
critical\:points\:f(x)=\frac{1}{5}x^{4}-\frac{3}{4}x^{4}
|
symmetry (x^2)/(x^2-9)
|
symmetry\:\frac{x^{2}}{x^{2}-9}
|
critical points of f(x)=(x^2)/(x+1)
|
critical\:points\:f(x)=\frac{x^{2}}{x+1}
|
asymptotes of f(x)= 5/((x-3)^3)
|
asymptotes\:f(x)=\frac{5}{(x-3)^{3}}
|
domain of f(x)=(2x-1)/(x-7)
|
domain\:f(x)=\frac{2x-1}{x-7}
|
inflection points of f(x)=(2x^2)/(x^2-9)
|
inflection\:points\:f(x)=\frac{2x^{2}}{x^{2}-9}
|
range of f(x)=(x^2-1)/(x+1)
|
range\:f(x)=\frac{x^{2}-1}{x+1}
|
extreme points of f(x)=x^3+3x^2
|
extreme\:points\:f(x)=x^{3}+3x^{2}
|
critical points of 3x^2+6x+1
|
critical\:points\:3x^{2}+6x+1
|
critical points of x^3+3x^2+3x+2
|
critical\:points\:x^{3}+3x^{2}+3x+2
|
inverse of y=3x+5
|
inverse\:y=3x+5
|
parity y=sqrt(((e^c))/(10x^{2/9))-x^2}
|
parity\:y=\sqrt{\frac{(e^{c})}{10x^{\frac{2}{9}}}-x^{2}}
|
domain of f(x)=(2x)/(sqrt(x-8))
|
domain\:f(x)=\frac{2x}{\sqrt{x-8}}
|
domain of V=(120-6w)w^2
|
domain\:V=(120-6w)w^{2}
|
inverse of 3x-8
|
inverse\:3x-8
|
extreme points of f(x)=sqrt(81-x^4)
|
extreme\:points\:f(x)=\sqrt{81-x^{4}}
|
domain of x/(x-5)
|
domain\:\frac{x}{x-5}
|
critical points of-x^3+6x^2
|
critical\:points\:-x^{3}+6x^{2}
|
range of 3x^2-6x+12
|
range\:3x^{2}-6x+12
|
symmetry y=x^3+10x
|
symmetry\:y=x^{3}+10x
|
domain of f(x)= 1/(x^2-8x-9)
|
domain\:f(x)=\frac{1}{x^{2}-8x-9}
|
range of f(x)=((1-x))/(2x-1)
|
range\:f(x)=\frac{(1-x)}{2x-1}
|
range of f(x)=5x-12
|
range\:f(x)=5x-12
|
extreme points of f(x)=3x^4-28x^3+60x^2
|
extreme\:points\:f(x)=3x^{4}-28x^{3}+60x^{2}
|
distance (2,7)(8,9)
|
distance\:(2,7)(8,9)
|
distance (6,-5)(-1,-4)
|
distance\:(6,-5)(-1,-4)
|
inverse of f(x)=(x+1)^2+4
|
inverse\:f(x)=(x+1)^{2}+4
|
inverse of f(x)=(5x)/(x-6)
|
inverse\:f(x)=\frac{5x}{x-6}
|
range of-4.9t^2+9.8t
|
range\:-4.9t^{2}+9.8t
|
slope intercept of 5x+7y=4y-2
|
slope\:intercept\:5x+7y=4y-2
|
inverse of 3x^3
|
inverse\:3x^{3}
|
domain of f(x)=((x/(x+5)))/((x/(x+5))+5)
|
domain\:f(x)=\frac{(\frac{x}{x+5})}{(\frac{x}{x+5})+5}
|
inverse of y=3^{2x-4}
|
inverse\:y=3^{2x-4}
|
extreme points of f(x)=-(x+1)^2
|
extreme\:points\:f(x)=-(x+1)^{2}
|
extreme points of f(x)=x6
|
extreme\:points\:f(x)=x6
|
critical points of y=(2x^2-5x+5)/(x-2)
|
critical\:points\:y=\frac{2x^{2}-5x+5}{x-2}
|
inverse of f(x)=4-x^2,x>= 0
|
inverse\:f(x)=4-x^{2},x\ge\:0
|
inverse of f(x)=3-2y^3
|
inverse\:f(x)=3-2y^{3}
|
domain of f(x)=3x^2-x^3
|
domain\:f(x)=3x^{2}-x^{3}
|
domain of f(x)=6x+4+sqrt(7x+8)
|
domain\:f(x)=6x+4+\sqrt{7x+8}
|
inverse of (2x)/(x+3)
|
inverse\:\frac{2x}{x+3}
|
domain of f(x)=sqrt(x)-5
|
domain\:f(x)=\sqrt{x}-5
|
range of 1+(2+x)^{1/2}
|
range\:1+(2+x)^{\frac{1}{2}}
|
domain of f(x)=sqrt(x^3-x^2-6x)
|
domain\:f(x)=\sqrt{x^{3}-x^{2}-6x}
|
asymptotes of f(x)=2^x+2
|
asymptotes\:f(x)=2^{x}+2
|
asymptotes of f(x)=e^{x-4}
|
asymptotes\:f(x)=e^{x-4}
|
midpoint (3,2)(5,-8)
|
midpoint\:(3,2)(5,-8)
|
extreme points of f(x)= x/(x+7)
|
extreme\:points\:f(x)=\frac{x}{x+7}
|
asymptotes of (x^2-x)/(x^2-7x+6)
|
asymptotes\:\frac{x^{2}-x}{x^{2}-7x+6}
|
asymptotes of f(x)=(12x)/(x^2-7x+6)
|
asymptotes\:f(x)=\frac{12x}{x^{2}-7x+6}
|
inflection points of f(x)=x^3-27x+8
|
inflection\:points\:f(x)=x^{3}-27x+8
|
critical points of x^3-3x^2+3x+9
|
critical\:points\:x^{3}-3x^{2}+3x+9
|
domain of f(x)=sqrt(x+16)
|
domain\:f(x)=\sqrt{x+16}
|
domain of 1/(1+x^2)
|
domain\:\frac{1}{1+x^{2}}
|
monotone intervals (x^2-2)^3
|
monotone\:intervals\:(x^{2}-2)^{3}
|
inverse of f(x)=1650((1.022))^{20.8}
|
inverse\:f(x)=1650((1.022))^{20.8}
|
extreme points of f(x)=x^8e^x-8
|
extreme\:points\:f(x)=x^{8}e^{x}-8
|
inverse of f(x)=e^{2x+6}
|
inverse\:f(x)=e^{2x+6}
|
line (1,-1)(0,2)
|
line\:(1,-1)(0,2)
|
inverse of f(x)= 2/(x-5)
|
inverse\:f(x)=\frac{2}{x-5}
|
domain of (x^2-16)/(4-x)
|
domain\:\frac{x^{2}-16}{4-x}
|
midpoint (-3,-5)(-1,-7)
|
midpoint\:(-3,-5)(-1,-7)
|
domain of (x-6)/(x-7)
|
domain\:\frac{x-6}{x-7}
|