line (-2,-4)(-1,5)
|
line\:(-2,-4)(-1,5)
|
domain of f(x)= 2/x-x/(x+2)
|
domain\:f(x)=\frac{2}{x}-\frac{x}{x+2}
|
inverse of f(x)=4(x-1)^2-3
|
inverse\:f(x)=4(x-1)^{2}-3
|
slope of x+3y=3
|
slope\:x+3y=3
|
symmetry y=-8x^3+2x^5
|
symmetry\:y=-8x^{3}+2x^{5}
|
slope of y=5-x
|
slope\:y=5-x
|
asymptotes of x^2-x
|
asymptotes\:x^{2}-x
|
extreme points of 9e^{-3x}x-6e^{-3x}
|
extreme\:points\:9e^{-3x}x-6e^{-3x}
|
inverse of x+x^2
|
inverse\:x+x^{2}
|
domain of y=(x^3-16x)/(-4x^2+4x+24)
|
domain\:y=\frac{x^{3}-16x}{-4x^{2}+4x+24}
|
inverse of f(x)=((\sqrt[5]{x})/7)^3
|
inverse\:f(x)=(\frac{\sqrt[5]{x}}{7})^{3}
|
asymptotes of f(x)=((x^2-5x-6))/(x+1)
|
asymptotes\:f(x)=\frac{(x^{2}-5x-6)}{x+1}
|
intercepts of f(x)=x^3+5x^2-16x-80
|
intercepts\:f(x)=x^{3}+5x^{2}-16x-80
|
slope intercept of 3x+5y=5
|
slope\:intercept\:3x+5y=5
|
domain of sqrt(x^2-25)
|
domain\:\sqrt{x^{2}-25}
|
inverse of f(x)=-8/(9x)
|
inverse\:f(x)=-\frac{8}{9x}
|
asymptotes of (x^2+x)/(-2x^2-2x+12)
|
asymptotes\:\frac{x^{2}+x}{-2x^{2}-2x+12}
|
domain of y=2sqrt(x+4)
|
domain\:y=2\sqrt{x+4}
|
inverse of f(x)=2x+7
|
inverse\:f(x)=2x+7
|
domain of f(x)=sqrt(-8x+9)
|
domain\:f(x)=\sqrt{-8x+9}
|
inflection points of (2x^2+3)/(x^2+1)
|
inflection\:points\:\frac{2x^{2}+3}{x^{2}+1}
|
slope intercept of y=-2
|
slope\:intercept\:y=-2
|
inverse of f(x)=3x^2-12x+4
|
inverse\:f(x)=3x^{2}-12x+4
|
intercepts of X^3
|
intercepts\:X^{3}
|
inverse of f(x)=((6-7x))/((8-5x))
|
inverse\:f(x)=\frac{(6-7x)}{(8-5x)}
|
extreme points of xsqrt((x+1))
|
extreme\:points\:x\sqrt{(x+1)}
|
domain of f(x)=x^{5/3}
|
domain\:f(x)=x^{\frac{5}{3}}
|
domain of f(x)=sqrt(x^2+x)-x
|
domain\:f(x)=\sqrt{x^{2}+x}-x
|
slope intercept of y=2(x-2)
|
slope\:intercept\:y=2(x-2)
|
critical points of 2t^{2/3}+t^{5/3}
|
critical\:points\:2t^{\frac{2}{3}}+t^{\frac{5}{3}}
|
slope of y=-18
|
slope\:y=-18
|
monotone intervals f(x)= 1/(4x^2+8)
|
monotone\:intervals\:f(x)=\frac{1}{4x^{2}+8}
|
domain of 1/2
|
domain\:\frac{1}{2}
|
parallel y= 2/3 x+7(6,4)
|
parallel\:y=\frac{2}{3}x+7(6,4)
|
extreme points of (x+3)^{6/7}
|
extreme\:points\:(x+3)^{\frac{6}{7}}
|
asymptotes of f(x)=(x^3+4x-2)/(x^2-4)
|
asymptotes\:f(x)=\frac{x^{3}+4x-2}{x^{2}-4}
|
domain of ln(x^8)
|
domain\:\ln(x^{8})
|
inverse of f(x)=(5+3x)/(2-3x)
|
inverse\:f(x)=\frac{5+3x}{2-3x}
|
range of f(x)=(x+5)/(x+2)
|
range\:f(x)=\frac{x+5}{x+2}
|
intercepts of f(x)=(12x^2)/(x^4+36)
|
intercepts\:f(x)=\frac{12x^{2}}{x^{4}+36}
|
intercepts of f(x)=(-2x+9)\div (x^2-4)
|
intercepts\:f(x)=(-2x+9)\div\:(x^{2}-4)
|
inverse of f(x)=(x-4)
|
inverse\:f(x)=(x-4)
|
domain of f(x)=(\sqrt[3]{x-4})/(x^3-4)
|
domain\:f(x)=\frac{\sqrt[3]{x-4}}{x^{3}-4}
|
range of sqrt(x-6)
|
range\:\sqrt{x-6}
|
domain of f(x)= 2/(3(x+3))
|
domain\:f(x)=\frac{2}{3(x+3)}
|
domain of f(x)=x^{3/2}
|
domain\:f(x)=x^{\frac{3}{2}}
|
domain of f(x)=sqrt(x+5)-1
|
domain\:f(x)=\sqrt{x+5}-1
|
perpendicular 2x+7y=1,\at (1,7)
|
perpendicular\:2x+7y=1,\at\:(1,7)
|
asymptotes of f(x)=(x+1)^2
|
asymptotes\:f(x)=(x+1)^{2}
|
inverse of 0.5(x+4)^3
|
inverse\:0.5(x+4)^{3}
|
inverse of 5x+1
|
inverse\:5x+1
|
inverse of f(x)= 1/(7x-3)
|
inverse\:f(x)=\frac{1}{7x-3}
|
line (4,4)(9,5)
|
line\:(4,4)(9,5)
|
inverse of f(x)= x/3-4/3
|
inverse\:f(x)=\frac{x}{3}-\frac{4}{3}
|
symmetry (x-3)^2=-12(y+4)
|
symmetry\:(x-3)^{2}=-12(y+4)
|
intercepts of f(x)=x-1
|
intercepts\:f(x)=x-1
|
inflection points of f(x)=(x^2-9)/(x-5)
|
inflection\:points\:f(x)=\frac{x^{2}-9}{x-5}
|
range of 5-x
|
range\:5-x
|
parity f(x)=(x^2)/(2(x-4)^2)
|
parity\:f(x)=\frac{x^{2}}{2(x-4)^{2}}
|
symmetry 1/(2x+4)
|
symmetry\:\frac{1}{2x+4}
|
asymptotes of g(x)=(2x^2)/(x^2+x-6)
|
asymptotes\:g(x)=\frac{2x^{2}}{x^{2}+x-6}
|
asymptotes of y=(sqrt(6x^2+7))/(8x+6)
|
asymptotes\:y=\frac{\sqrt{6x^{2}+7}}{8x+6}
|
midpoint (2,5)(-1,7)
|
midpoint\:(2,5)(-1,7)
|
midpoint (3,8)(1,-4)
|
midpoint\:(3,8)(1,-4)
|
symmetry x^2-4x+4
|
symmetry\:x^{2}-4x+4
|
critical points of f(x)=-1+4x-x^3
|
critical\:points\:f(x)=-1+4x-x^{3}
|
extreme points of f(x)=x+(17)/x
|
extreme\:points\:f(x)=x+\frac{17}{x}
|
distance (8,6)(-4,-3)
|
distance\:(8,6)(-4,-3)
|
asymptotes of f(x)=(-x^2-5x+2)/(x+3)
|
asymptotes\:f(x)=\frac{-x^{2}-5x+2}{x+3}
|
range of 2sin(1/2)
|
range\:2\sin(\frac{1}{2})
|
domain of x-5
|
domain\:x-5
|
line-x+y=4
|
line\:-x+y=4
|
extreme points of f(x)=4sqrt(x)-2x
|
extreme\:points\:f(x)=4\sqrt{x}-2x
|
inverse of f(x)=((x-6)^{1/2})/7
|
inverse\:f(x)=\frac{(x-6)^{\frac{1}{2}}}{7}
|
range of f(x)=2(x+3)^2-1
|
range\:f(x)=2(x+3)^{2}-1
|
inverse of f(x)=9x^2,x>= 0
|
inverse\:f(x)=9x^{2},x\ge\:0
|
inverse of f(x)=x^7+3
|
inverse\:f(x)=x^{7}+3
|
monotone intervals f(x)=(x^2-3)/(x-2)
|
monotone\:intervals\:f(x)=\frac{x^{2}-3}{x-2}
|
intercepts of f(x)=-4(x-2)^2-3
|
intercepts\:f(x)=-4(x-2)^{2}-3
|
inverse of f(x)=2x^3+1
|
inverse\:f(x)=2x^{3}+1
|
domain of f(x)=(x^2)/(x-3)
|
domain\:f(x)=\frac{x^{2}}{x-3}
|
domain of y=sqrt(4-x^2)
|
domain\:y=\sqrt{4-x^{2}}
|
inverse of f(x)= 1/2 x+2
|
inverse\:f(x)=\frac{1}{2}x+2
|
domain of f(x)=3x^2-x-2
|
domain\:f(x)=3x^{2}-x-2
|
domain of f(x)=x^2-5x+6
|
domain\:f(x)=x^{2}-5x+6
|
domain of f(x)=y=\sqrt[3]{x-2}
|
domain\:f(x)=y=\sqrt[3]{x-2}
|
domain of f(x)=-3sqrt(x)
|
domain\:f(x)=-3\sqrt{x}
|
domain of (x+1)/(10(x-2))
|
domain\:\frac{x+1}{10(x-2)}
|
midpoint (3,7)(2,-1)
|
midpoint\:(3,7)(2,-1)
|
asymptotes of f(x)=(3x^2+x-3)/(x^2+x-2)
|
asymptotes\:f(x)=\frac{3x^{2}+x-3}{x^{2}+x-2}
|
domain of f(x)=(6x+7)/(9x+2)
|
domain\:f(x)=\frac{6x+7}{9x+2}
|
range of f(x)=-x^3
|
range\:f(x)=-x^{3}
|
intercepts of f(x)= 2/(x^2-2x-3)
|
intercepts\:f(x)=\frac{2}{x^{2}-2x-3}
|
domain of f(x)=ln(x)+ln(1-x)
|
domain\:f(x)=\ln(x)+\ln(1-x)
|
midpoint (1,1)(4,4)
|
midpoint\:(1,1)(4,4)
|
shift f(x)=4sin(3pi-2pi x)-7pi
|
shift\:f(x)=4\sin(3\pi-2\pi\:x)-7\pi
|
inverse of y=(x+2)/(1-2x)
|
inverse\:y=\frac{x+2}{1-2x}
|
critical points of sqrt(4x^2+3)
|
critical\:points\:\sqrt{4x^{2}+3}
|
perpendicular y=-17x+8,\at (6,-7)
|
perpendicular\:y=-17x+8,\at\:(6,-7)
|
slope intercept of y=-4
|
slope\:intercept\:y=-4
|