critical points of f(x)=5x^2+4x
|
critical\:points\:f(x)=5x^{2}+4x
|
domain of 3x-8
|
domain\:3x-8
|
domain of y= 1/(x+1)
|
domain\:y=\frac{1}{x+1}
|
domain of f(x)= 1/5 x-1/6
|
domain\:f(x)=\frac{1}{5}x-\frac{1}{6}
|
inverse of f(x)=(1/2)^x
|
inverse\:f(x)=(\frac{1}{2})^{x}
|
asymptotes of f(x)=(x^2+5x)/(x^2+7x+10)
|
asymptotes\:f(x)=\frac{x^{2}+5x}{x^{2}+7x+10}
|
slope of (11,9)5
|
slope\:(11,9)5
|
domain of f(x)= 1/2 \sqrt[3]{x}
|
domain\:f(x)=\frac{1}{2}\sqrt[3]{x}
|
domain of f(x)=(sqrt(x+7))/(x-7)
|
domain\:f(x)=\frac{\sqrt{x+7}}{x-7}
|
asymptotes of ((x^2+4))/(6x^2-35x-6)
|
asymptotes\:\frac{(x^{2}+4)}{6x^{2}-35x-6}
|
intercepts of 1/2 sqrt(x+3)
|
intercepts\:\frac{1}{2}\sqrt{x+3}
|
slope intercept of 12x+2y=-12
|
slope\:intercept\:12x+2y=-12
|
inverse of f(x)=10+0.8x
|
inverse\:f(x)=10+0.8x
|
distance (8,5)(16,11)
|
distance\:(8,5)(16,11)
|
extreme points of x^3-16x^2+12x-4
|
extreme\:points\:x^{3}-16x^{2}+12x-4
|
domain of f(x)=-9
|
domain\:f(x)=-9
|
extreme points of f(x)=-2/(x^2-16)
|
extreme\:points\:f(x)=-\frac{2}{x^{2}-16}
|
inverse of f(x)=2x^3+5
|
inverse\:f(x)=2x^{3}+5
|
range of f(x)= 4/(sqrt(x^2-4x+3))
|
range\:f(x)=\frac{4}{\sqrt{x^{2}-4x+3}}
|
inverse of f(x)=(5x+9)/(x+5)
|
inverse\:f(x)=\frac{5x+9}{x+5}
|
extreme points of f(x)=3x^4+8x^3
|
extreme\:points\:f(x)=3x^{4}+8x^{3}
|
extreme points of ((x-1)^3)/(x^2)
|
extreme\:points\:\frac{(x-1)^{3}}{x^{2}}
|
inverse of f(x)= 2/(x+3)
|
inverse\:f(x)=\frac{2}{x+3}
|
domain of f(x)=-(11)/((5+x)^2)
|
domain\:f(x)=-\frac{11}{(5+x)^{2}}
|
asymptotes of f(x)=(6+x)/(x^2(6-x))
|
asymptotes\:f(x)=\frac{6+x}{x^{2}(6-x)}
|
inverse of f(x)=-3(x+2)
|
inverse\:f(x)=-3(x+2)
|
extreme points of f(x)= x/(x+1)
|
extreme\:points\:f(x)=\frac{x}{x+1}
|
parity f(x)=(x+3)^2
|
parity\:f(x)=(x+3)^{2}
|
domain of f(x)=-2/3 sqrt(3/4 (5-6x))-9
|
domain\:f(x)=-\frac{2}{3}\sqrt{\frac{3}{4}(5-6x)}-9
|
domain of f(x)=(-x+1)^2+2
|
domain\:f(x)=(-x+1)^{2}+2
|
asymptotes of f(x)=(3x^3+1)/(x^2+x+9)
|
asymptotes\:f(x)=\frac{3x^{3}+1}{x^{2}+x+9}
|
shift f(x)=y=4cos(2x(-3pi)/2)
|
shift\:f(x)=y=4\cos(2x\frac{-3\pi}{2})
|
parity (tan(3x))/(x^2)
|
parity\:\frac{\tan(3x)}{x^{2}}
|
inverse of f(x)=x^2-20x
|
inverse\:f(x)=x^{2}-20x
|
asymptotes of (2x+7)/(3x-7)
|
asymptotes\:\frac{2x+7}{3x-7}
|
domain of f(x)=sqrt(3x-15)
|
domain\:f(x)=\sqrt{3x-15}
|
critical points of f(x)=x^4-8x^2+10
|
critical\:points\:f(x)=x^{4}-8x^{2}+10
|
asymptotes of f(x)=(2x^2-3x+5)/(x^2+1)
|
asymptotes\:f(x)=\frac{2x^{2}-3x+5}{x^{2}+1}
|
global extreme points of 8x^4-8x^2+1
|
global\:extreme\:points\:8x^{4}-8x^{2}+1
|
extreme points of f(x)=5x^2+8x-2
|
extreme\:points\:f(x)=5x^{2}+8x-2
|
inflection points of (x-5)^2
|
inflection\:points\:(x-5)^{2}
|
periodicity of y=tan((5x)/6)
|
periodicity\:y=\tan(\frac{5x}{6})
|
critical points of f(x)=0.09x^2+17x+350
|
critical\:points\:f(x)=0.09x^{2}+17x+350
|
inverse of z/((z+1)^2)
|
inverse\:\frac{z}{(z+1)^{2}}
|
asymptotes of (4x^2-9)/(2x-3)
|
asymptotes\:\frac{4x^{2}-9}{2x-3}
|
amplitude of y=6cos(2pi x)
|
amplitude\:y=6\cos(2\pi\:x)
|
intercepts of-x^2+20x-11
|
intercepts\:-x^{2}+20x-11
|
range of f(x)=3sin(2x)
|
range\:f(x)=3\sin(2x)
|
line (0,5)(-3,6)
|
line\:(0,5)(-3,6)
|
range of (x^2-2x+1)/(x^3-3x^2)
|
range\:\frac{x^{2}-2x+1}{x^{3}-3x^{2}}
|
critical points of f(x)=x^3+5x^2-4x+1
|
critical\:points\:f(x)=x^{3}+5x^{2}-4x+1
|
midpoint (2,4)(-3,-8)
|
midpoint\:(2,4)(-3,-8)
|
t
|
t
|
domain of f(x)=ln(4-x)
|
domain\:f(x)=\ln(4-x)
|
periodicity of f(x)=3sin(2x)
|
periodicity\:f(x)=3\sin(2x)
|
domain of f(x)=x+3
|
domain\:f(x)=x+3
|
intercepts of f(x)=y=4x-4
|
intercepts\:f(x)=y=4x-4
|
range of f(x)= 2/(sqrt(2x-5))
|
range\:f(x)=\frac{2}{\sqrt{2x-5}}
|
parity f(x)=2x^5-3x^2+2
|
parity\:f(x)=2x^{5}-3x^{2}+2
|
domain of f(x)=6x+4
|
domain\:f(x)=6x+4
|
domain of f(x)=sqrt(x^2+1)
|
domain\:f(x)=\sqrt{x^{2}+1}
|
asymptotes of f(x)=((x+8))/((x^2+7x))
|
asymptotes\:f(x)=\frac{(x+8)}{(x^{2}+7x)}
|
inverse of f(x)= 5/(2-3x)
|
inverse\:f(x)=\frac{5}{2-3x}
|
range of-sqrt(25-x^2)
|
range\:-\sqrt{25-x^{2}}
|
inverse of f(x)=-9(x-3)^2-11
|
inverse\:f(x)=-9(x-3)^{2}-11
|
inverse of f(x)=3x^2+2x
|
inverse\:f(x)=3x^{2}+2x
|
domain of f(x)= 1/(x^3-x)
|
domain\:f(x)=\frac{1}{x^{3}-x}
|
perpendicular y+6=-1/5 (x+3)(-5,-9)
|
perpendicular\:y+6=-\frac{1}{5}(x+3)(-5,-9)
|
range of log_{4}(x-4)
|
range\:\log_{4}(x-4)
|
domain of (x^2+x-2)/(x+1)
|
domain\:\frac{x^{2}+x-2}{x+1}
|
intercepts of (4x^2+6x-4)/(2x^2+13x+15)
|
intercepts\:\frac{4x^{2}+6x-4}{2x^{2}+13x+15}
|
distance (-3,-1)(4,3)
|
distance\:(-3,-1)(4,3)
|
range of f(x)=sqrt(-x+3)
|
range\:f(x)=\sqrt{-x+3}
|
domain of f(x)=\sqrt[4]{t^2-100}
|
domain\:f(x)=\sqrt[4]{t^{2}-100}
|
domain of f(x)=(x+5)/(x-5)
|
domain\:f(x)=\frac{x+5}{x-5}
|
extreme points of f(x)=sin^2(x)
|
extreme\:points\:f(x)=\sin^{2}(x)
|
domain of y=sqrt(x-4)+3
|
domain\:y=\sqrt{x-4}+3
|
asymptotes of (x^2-2)/(x-2)
|
asymptotes\:\frac{x^{2}-2}{x-2}
|
slope of f(x)=-2/5 x+6
|
slope\:f(x)=-\frac{2}{5}x+6
|
inverse of f(x)=x^2-3x+2
|
inverse\:f(x)=x^{2}-3x+2
|
parity f(x)=5x^2-4x^6+x^4
|
parity\:f(x)=5x^{2}-4x^{6}+x^{4}
|
inverse of f(x)=2+sqrt(x-3)
|
inverse\:f(x)=2+\sqrt{x-3}
|
intercepts of f(x)=2x^2-12x-32
|
intercepts\:f(x)=2x^{2}-12x-32
|
inverse of f(4)=7x-3
|
inverse\:f(4)=7x-3
|
domain of f(x)= 8/(x-4)
|
domain\:f(x)=\frac{8}{x-4}
|
intercepts of f(x)=x^2+8x-16
|
intercepts\:f(x)=x^{2}+8x-16
|
asymptotes of f(x)=(x^2+x-20)/(5x+25)
|
asymptotes\:f(x)=\frac{x^{2}+x-20}{5x+25}
|
inverse of sqrt(3x+9)
|
inverse\:\sqrt{3x+9}
|
domain of x^2-8x+15
|
domain\:x^{2}-8x+15
|
symmetry 2x-1
|
symmetry\:2x-1
|
inverse of 3^{x-1}
|
inverse\:3^{x-1}
|
domain of 7/(sqrt(x+5))
|
domain\:\frac{7}{\sqrt{x+5}}
|
domain of f(x)=-(1/5)^x
|
domain\:f(x)=-(\frac{1}{5})^{x}
|
intercepts of f(x)=x^4+3x^3-10x^2
|
intercepts\:f(x)=x^{4}+3x^{3}-10x^{2}
|
intercepts of (4x^2)/(x^2+4)
|
intercepts\:\frac{4x^{2}}{x^{2}+4}
|
asymptotes of (x^2+4x+4)/(x^3+4x^2)
|
asymptotes\:\frac{x^{2}+4x+4}{x^{3}+4x^{2}}
|
domain of f(x)= 4/(x+1)
|
domain\:f(x)=\frac{4}{x+1}
|
domain of (x^3+8)/(x^2-8)
|
domain\:\frac{x^{3}+8}{x^{2}-8}
|
slope of 3x+2y=2
|
slope\:3x+2y=2
|
intercepts of f(x)=-5x+8y=14
|
intercepts\:f(x)=-5x+8y=14
|