inverse f(x)=x^{1/3}+2
|
inverse\:f(x)=x^{\frac{1}{3}}+2
|
domain (5x-4)/(7x+3)
|
domain\:\frac{5x-4}{7x+3}
|
midpoint (4,3)(6,0)
|
midpoint\:(4,3)(6,0)
|
inverse f(x)=(x+3)/(x-4)
|
inverse\:f(x)=\frac{x+3}{x-4}
|
inverse y=7x+8
|
inverse\:y=7x+8
|
inverse f(x)=x+1/3
|
inverse\:f(x)=x+\frac{1}{3}
|
slope intercept 6x+3y=5.97
|
slope\:intercept\:6x+3y=5.97
|
asymptotes f(x)=(x+8)/(x+1)
|
asymptotes\:f(x)=\frac{x+8}{x+1}
|
inverse y=-5x+2
|
inverse\:y=-5x+2
|
parity (2x-2x^4+x^5+1)\div (x^3-x^2-1)
|
parity\:(2x-2x^{4}+x^{5}+1)\div\:(x^{3}-x^{2}-1)
|
inverse f(x)=((3+4x))/(2-5x)
|
inverse\:f(x)=\frac{(3+4x)}{2-5x}
|
line m= 1/3 ,\at (3,9)
|
line\:m=\frac{1}{3},\at\:(3,9)
|
inverse f(x)=(3-x)/(x+1)
|
inverse\:f(x)=\frac{3-x}{x+1}
|
parity (x^2-3x-2)\div (4x^4+5x-4)
|
parity\:(x^{2}-3x-2)\div\:(4x^{4}+5x-4)
|
extreme points f(x)=sin^2(x/4)
|
extreme\:points\:f(x)=\sin^{2}(\frac{x}{4})
|
inverse f(x)=-2x+8
|
inverse\:f(x)=-2x+8
|
asymptotes (x^2-x)/(x^2-4x+3)
|
asymptotes\:\frac{x^{2}-x}{x^{2}-4x+3}
|
inflection points x^4-2x^2+3
|
inflection\:points\:x^{4}-2x^{2}+3
|
inverse f(x)=-1/2 sqrt(x+3,)x>=-3
|
inverse\:f(x)=-\frac{1}{2}\sqrt{x+3,}x\ge\:-3
|
perpendicular y=3x-1,\at (-1,-1)
|
perpendicular\:y=3x-1,\at\:(-1,-1)
|
domain f(x)=(x^3)/(sqrt(2-x))
|
domain\:f(x)=\frac{x^{3}}{\sqrt{2-x}}
|
critical points f(x)=8x^3+x^2+8x
|
critical\:points\:f(x)=8x^{3}+x^{2}+8x
|
asymptotes f(x)= 5/((x-3)^2)
|
asymptotes\:f(x)=\frac{5}{(x-3)^{2}}
|
inverse f(x)= 1/2 x+1
|
inverse\:f(x)=\frac{1}{2}x+1
|
domain ((x^2-4))/(x^3+x^2-4x-4)
|
domain\:\frac{(x^{2}-4)}{x^{3}+x^{2}-4x-4}
|
domain f(x)=\sqrt[3]{x^2-3}
|
domain\:f(x)=\sqrt[3]{x^{2}-3}
|
slope intercept y=8
|
slope\:intercept\:y=8
|
asymptotes f(x)=(x^2)/(sqrt(x^2-4))-x+3
|
asymptotes\:f(x)=\frac{x^{2}}{\sqrt{x^{2}-4}}-x+3
|
intercepts f(x)=5x^2
|
intercepts\:f(x)=5x^{2}
|
inverse 1+(8+x)^{1/2}
|
inverse\:1+(8+x)^{\frac{1}{2}}
|
domain f(x)=21x^2+32x+12
|
domain\:f(x)=21x^{2}+32x+12
|
inverse f(x)= 1/3 (x-4)^2-2
|
inverse\:f(x)=\frac{1}{3}(x-4)^{2}-2
|
range f(x)=\sqrt[3]{x+8}
|
range\:f(x)=\sqrt[3]{x+8}
|
slope 2(1,2)
|
slope\:2(1,2)
|
asymptotes f(x)=(2x)/x
|
asymptotes\:f(x)=\frac{2x}{x}
|
inverse f(x)=4x+1
|
inverse\:f(x)=4x+1
|
parallel x-3y=-3
|
parallel\:x-3y=-3
|
parallel 3x-2y=6
|
parallel\:3x-2y=6
|
domain (4/(x+3))*(2x^2)
|
domain\:(\frac{4}{x+3})\cdot\:(2x^{2})
|
intercepts f(x)=6x+5y=0
|
intercepts\:f(x)=6x+5y=0
|
extreme points f(x)=x^2ln(x)
|
extreme\:points\:f(x)=x^{2}\ln(x)
|
intercepts h(t)=-16t^2+32t+8
|
intercepts\:h(t)=-16t^{2}+32t+8
|
inverse 4x+15
|
inverse\:4x+15
|
inverse f(x)=2n+1
|
inverse\:f(x)=2n+1
|
slope y=5x-4
|
slope\:y=5x-4
|
perpendicular 8
|
perpendicular\:8
|
parity 5xsqrt(2x^2+3dx)
|
parity\:5x\sqrt{2x^{2}+3dx}
|
inverse f(x)= 1/3 (x^2+2)^{3/2}
|
inverse\:f(x)=\frac{1}{3}(x^{2}+2)^{\frac{3}{2}}
|
asymptotes f(x)=((4x^2-10))/((2x-4))
|
asymptotes\:f(x)=\frac{(4x^{2}-10)}{(2x-4)}
|
critical points f(x)=sqrt(8-x^3)
|
critical\:points\:f(x)=\sqrt{8-x^{3}}
|
domain f(x)=sqrt(x)+4
|
domain\:f(x)=\sqrt{x}+4
|
parity f(x)=5sec(x)-4x
|
parity\:f(x)=5\sec(x)-4x
|
extreme points f(x)=-x^3-6x^2+3
|
extreme\:points\:f(x)=-x^{3}-6x^{2}+3
|
asymptotes f(x)=(5x^2-3)/(x+2)
|
asymptotes\:f(x)=\frac{5x^{2}-3}{x+2}
|
range sqrt(x+15)
|
range\:\sqrt{x+15}
|
domain f(x)= 1/(x+2)
|
domain\:f(x)=\frac{1}{x+2}
|
range f(x)=(3x^2)/(x^2-4)
|
range\:f(x)=\frac{3x^{2}}{x^{2}-4}
|
inverse f(x)=\sqrt[5]{x}-2
|
inverse\:f(x)=\sqrt[5]{x}-2
|
asymptotes 1/3 log_{10}(3x)
|
asymptotes\:\frac{1}{3}\log_{10}(3x)
|
domain 2arcsin(1/2 x)
|
domain\:2\arcsin(\frac{1}{2}x)
|
inflection points f(x)=(e^x-e^{-x})/6
|
inflection\:points\:f(x)=\frac{e^{x}-e^{-x}}{6}
|
domain (x+7)/(8x+7)
|
domain\:\frac{x+7}{8x+7}
|
inverse f(x)=-x^2+5
|
inverse\:f(x)=-x^{2}+5
|
extreme points 2x^3+15x^2+13
|
extreme\:points\:2x^{3}+15x^{2}+13
|
intercepts f(x)=11x^2+25y=275
|
intercepts\:f(x)=11x^{2}+25y=275
|
range f(x)=3x^2+5,0<= x<= 9
|
range\:f(x)=3x^{2}+5,0\le\:x\le\:9
|
critical points 11-3e^{-x}
|
critical\:points\:11-3e^{-x}
|
inverse f(x)=(x-3)/5
|
inverse\:f(x)=\frac{x-3}{5}
|
domain f(x)=(15x^2)/(x+5)
|
domain\:f(x)=\frac{15x^{2}}{x+5}
|
asymptotes f(x)=(x-2)/(x^2-4)
|
asymptotes\:f(x)=\frac{x-2}{x^{2}-4}
|
extreme points f(x)=3x^2-2x+1
|
extreme\:points\:f(x)=3x^{2}-2x+1
|
distance (-2,1)(1,3)
|
distance\:(-2,1)(1,3)
|
domain (3x-6)/7
|
domain\:\frac{3x-6}{7}
|
inverse f(x)=sqrt(x+4)+5
|
inverse\:f(x)=\sqrt{x+4}+5
|
critical points g(x)=x^6-9x^4
|
critical\:points\:g(x)=x^{6}-9x^{4}
|
domain f(x)=sqrt(\sqrt{x^2-1)-1}
|
domain\:f(x)=\sqrt{\sqrt{x^{2}-1}-1}
|
asymptotes f(x)=(2x^2)/(x^2+1)
|
asymptotes\:f(x)=\frac{2x^{2}}{x^{2}+1}
|
inverse f(x)=(x^2-4)/(8x^2)
|
inverse\:f(x)=\frac{x^{2}-4}{8x^{2}}
|
extreme points f(x)=-4x^3
|
extreme\:points\:f(x)=-4x^{3}
|
inverse f(x)=5-7x
|
inverse\:f(x)=5-7x
|
extreme points f(x)=x^4-32x^2+256
|
extreme\:points\:f(x)=x^{4}-32x^{2}+256
|
perpendicular 5x+3y=15
|
perpendicular\:5x+3y=15
|
y=3^x
|
y=3^{x}
|
slope intercept 2(3-x)=6y+1
|
slope\:intercept\:2(3-x)=6y+1
|
inverse =\sqrt[3]{x^2}
|
inverse\:=\sqrt[3]{x^{2}}
|
inverse 2e^{2x+3}
|
inverse\:2e^{2x+3}
|
range f(x)=(x^2+x+1)/(x^2-7x+12)
|
range\:f(x)=\frac{x^{2}+x+1}{x^{2}-7x+12}
|
midpoint (1/2 ,4)(3, 1/4)
|
midpoint\:(\frac{1}{2},4)(3,\frac{1}{4})
|
intercepts f(x)=-2x^2-7x+2
|
intercepts\:f(x)=-2x^{2}-7x+2
|
inverse (x-2)/(x-1)
|
inverse\:\frac{x-2}{x-1}
|
parity f(x)=2x^3+1
|
parity\:f(x)=2x^{3}+1
|
inflection points x^2ln(x/6)
|
inflection\:points\:x^{2}\ln(\frac{x}{6})
|
extreme points f(x)=(x-2)(x-5)^3+4
|
extreme\:points\:f(x)=(x-2)(x-5)^{3}+4
|
inverse (6x)/(x+5)
|
inverse\:\frac{6x}{x+5}
|
extreme points y=4x^2-16x+11
|
extreme\:points\:y=4x^{2}-16x+11
|
shift 1/2 cos(3x+(pi)/2)
|
shift\:\frac{1}{2}\cos(3x+\frac{\pi}{2})
|
midpoint (-2,4)(7,0)
|
midpoint\:(-2,4)(7,0)
|
inflection points 3/4*(x^2-1)^{2/3}
|
inflection\:points\:\frac{3}{4}\cdot\:(x^{2}-1)^{\frac{2}{3}}
|
frequency-2sin(x/4)+3
|
frequency\:-2\sin(\frac{x}{4})+3
|
monotone intervals 1/2*4^x
|
monotone\:intervals\:\frac{1}{2}\cdot\:4^{x}
|