domain of (sqrt(x))/(x-7)
|
domain\:\frac{\sqrt{x}}{x-7}
|
y=3x-3
|
y=3x-3
|
extreme points of f(x,y)=1
|
extreme\:points\:f(x,y)=1
|
inflection points of x^2e^{-x}
|
inflection\:points\:x^{2}e^{-x}
|
inverse of f(x)=2*(1/2)^x
|
inverse\:f(x)=2\cdot\:(\frac{1}{2})^{x}
|
inverse of f(x)=sqrt(x+4)+9
|
inverse\:f(x)=\sqrt{x+4}+9
|
inverse of (2x^3-6)/9
|
inverse\:\frac{2x^{3}-6}{9}
|
critical points of f(x)=(x+2)^2(x-1)
|
critical\:points\:f(x)=(x+2)^{2}(x-1)
|
asymptotes of f(x)=(x^3)/(x^4-1)
|
asymptotes\:f(x)=\frac{x^{3}}{x^{4}-1}
|
asymptotes of f(x)=((4x^2-x))/((x^2-1))
|
asymptotes\:f(x)=\frac{(4x^{2}-x)}{(x^{2}-1)}
|
extreme points of f(x)=4x^3=3x^4
|
extreme\:points\:f(x)=4x^{3}=3x^{4}
|
domain of (x^3+x^2-6x)/(4x^2+4x-8)
|
domain\:\frac{x^{3}+x^{2}-6x}{4x^{2}+4x-8}
|
slope of 3.54
|
slope\:3.54
|
intercepts of-x^2-1
|
intercepts\:-x^{2}-1
|
arccos
|
\arccos
|
domain of f(x)=(9x)/(x^2-16)
|
domain\:f(x)=\frac{9x}{x^{2}-16}
|
domain of (3sqrt(2)^2)/(sqrt(2)^2+1)
|
domain\:\frac{3\sqrt{2}^{2}}{\sqrt{2}^{2}+1}
|
parity f(x)=3x^5+x^3
|
parity\:f(x)=3x^{5}+x^{3}
|
parity f(x)=6x^3
|
parity\:f(x)=6x^{3}
|
intercepts of =sqrt(4-x^2)
|
intercepts\:=\sqrt{4-x^{2}}
|
midpoint (-4,-10)(9,9)
|
midpoint\:(-4,-10)(9,9)
|
inverse of 2cos(11x)+6
|
inverse\:2\cos(11x)+6
|
domain of f(x)=-2x-4
|
domain\:f(x)=-2x-4
|
asymptotes of f(x)=(2x)/(x^3+x^2-2x)
|
asymptotes\:f(x)=\frac{2x}{x^{3}+x^{2}-2x}
|
inverse of f(x)=-1/62
|
inverse\:f(x)=-\frac{1}{62}
|
domain of f(x)=y=x^2+3
|
domain\:f(x)=y=x^{2}+3
|
parity f(x)=|x+3|-|x-3|
|
parity\:f(x)=|x+3|-|x-3|
|
line y=-x+7
|
line\:y=-x+7
|
intercepts of y=-12
|
intercepts\:y=-12
|
extreme points of f(x)=2x^3+9x^2-108x+4
|
extreme\:points\:f(x)=2x^{3}+9x^{2}-108x+4
|
asymptotes of f(x)=((8-7x))/((8+9x))
|
asymptotes\:f(x)=\frac{(8-7x)}{(8+9x)}
|
domain of y=-2x^2+5
|
domain\:y=-2x^{2}+5
|
range of f(x)=x^2+4
|
range\:f(x)=x^{2}+4
|
intercepts of log_{3}(x-2)+3
|
intercepts\:\log_{3}(x-2)+3
|
y= 1/(x-2)
|
y=\frac{1}{x-2}
|
critical points of 2/(5x^{3/5)}
|
critical\:points\:\frac{2}{5x^{\frac{3}{5}}}
|
domain of sqrt(t^2+4)
|
domain\:\sqrt{t^{2}+4}
|
inverse of f(x)=(1-sqrt(x))/(1+sqrt(x))
|
inverse\:f(x)=\frac{1-\sqrt{x}}{1+\sqrt{x}}
|
domain of 3/(3x+12)
|
domain\:\frac{3}{3x+12}
|
range of y=(sqrt(4-x^2))/(x^2-1)
|
range\:y=\frac{\sqrt{4-x^{2}}}{x^{2}-1}
|
extreme points of f(x)= x/(x^2-1)
|
extreme\:points\:f(x)=\frac{x}{x^{2}-1}
|
inverse of f(x)=(4x-1)/(2x+5)
|
inverse\:f(x)=\frac{4x-1}{2x+5}
|
intercepts of f(x)=0.35x^2-0.7x-7
|
intercepts\:f(x)=0.35x^{2}-0.7x-7
|
inflection points of x/(x^2-1)
|
inflection\:points\:\frac{x}{x^{2}-1}
|
domain of f(x)=(x-8)/x
|
domain\:f(x)=\frac{x-8}{x}
|
domain of sqrt(1-2x)+1/x
|
domain\:\sqrt{1-2x}+\frac{1}{x}
|
perpendicular 2x+y=6,\at (4,3)
|
perpendicular\:2x+y=6,\at\:(4,3)
|
domain of f(x)=(sqrt(7-x))/(3x-15)
|
domain\:f(x)=\frac{\sqrt{7-x}}{3x-15}
|
midpoint (-53,89)(-90,-95)
|
midpoint\:(-53,89)(-90,-95)
|
critical points of f(x)=2x(2x^2-3x+1)
|
critical\:points\:f(x)=2x(2x^{2}-3x+1)
|
inverse of f(x)=(-2x-1)/(x+5)
|
inverse\:f(x)=\frac{-2x-1}{x+5}
|
domain of 1/(3x-x^2)
|
domain\:\frac{1}{3x-x^{2}}
|
slope intercept of 2,(0,-1)
|
slope\:intercept\:2,(0,-1)
|
perpendicular y=-3/2 x-6,\at (-8,5)
|
perpendicular\:y=-\frac{3}{2}x-6,\at\:(-8,5)
|
range of y=log_{b}(x)
|
range\:y=\log_{b}(x)
|
domain of (sqrt(x-1)+2)/(sqrt(x-1)-2)
|
domain\:\frac{\sqrt{x-1}+2}{\sqrt{x-1}-2}
|
domain of f(x)=2-2x
|
domain\:f(x)=2-2x
|
inflection points of f(x)=8x-ln(8x)
|
inflection\:points\:f(x)=8x-\ln(8x)
|
inverse of f(x)=7x^{1/4}+10
|
inverse\:f(x)=7x^{\frac{1}{4}}+10
|
extreme points of 1/(x^2-4)
|
extreme\:points\:\frac{1}{x^{2}-4}
|
asymptotes of f(x)=((t^2-6t))/(t^4-1296)
|
asymptotes\:f(x)=\frac{(t^{2}-6t)}{t^{4}-1296}
|
midpoint (-1,-2)(1,2)
|
midpoint\:(-1,-2)(1,2)
|
inverse of (x^2)/(x-2)
|
inverse\:\frac{x^{2}}{x-2}
|
domain of f(x)= 5/(2x^2+1)
|
domain\:f(x)=\frac{5}{2x^{2}+1}
|
inverse of f(x)= 7/(4x+1)
|
inverse\:f(x)=\frac{7}{4x+1}
|
distance (0,0)(6,8)
|
distance\:(0,0)(6,8)
|
range of-6|x-3|
|
range\:-6|x-3|
|
asymptotes of f(x)=(2e^x)/(e^x-6)
|
asymptotes\:f(x)=\frac{2e^{x}}{e^{x}-6}
|
asymptotes of f(x)=(7x^2+5x-2)/(2x^2-18)
|
asymptotes\:f(x)=\frac{7x^{2}+5x-2}{2x^{2}-18}
|
y=x^2-2x
|
y=x^{2}-2x
|
midpoint (8,4)(11,8)
|
midpoint\:(8,4)(11,8)
|
domain of f(x)= 5/(1-x^2)
|
domain\:f(x)=\frac{5}{1-x^{2}}
|
domain of f(x)=((x^2-4))/(x-2)
|
domain\:f(x)=\frac{(x^{2}-4)}{x-2}
|
midpoint (10,6)(7,10)
|
midpoint\:(10,6)(7,10)
|
line (-3,0)m=3
|
line\:(-3,0)m=3
|
inverse of f(x)=(x-15)/3
|
inverse\:f(x)=\frac{x-15}{3}
|
inverse of f(x)=3+sqrt(6+8x)
|
inverse\:f(x)=3+\sqrt{6+8x}
|
inverse of f(x)=3sqrt(x+2)
|
inverse\:f(x)=3\sqrt{x+2}
|
intercepts of f(x)=(x^2)/(x^2-x-12)
|
intercepts\:f(x)=\frac{x^{2}}{x^{2}-x-12}
|
inverse of f(x)=2-1/x
|
inverse\:f(x)=2-\frac{1}{x}
|
intercepts of f(x)=x^2+17x+16
|
intercepts\:f(x)=x^{2}+17x+16
|
range of 4/(x^2-4x)
|
range\:\frac{4}{x^{2}-4x}
|
critical points of 3x^2-15x-18
|
critical\:points\:3x^{2}-15x-18
|
inflection points of f(x)=(9x)/(x^2-4)
|
inflection\:points\:f(x)=\frac{9x}{x^{2}-4}
|
domain of (-5x+25)/9
|
domain\:\frac{-5x+25}{9}
|
range of ln(x+4)
|
range\:\ln(x+4)
|
domain of f(x)=\sqrt[3]{x+3}
|
domain\:f(x)=\sqrt[3]{x+3}
|
domain of f(x)=(7x-14)/(5x+10)
|
domain\:f(x)=\frac{7x-14}{5x+10}
|
distance (-8,6)(-6,0)
|
distance\:(-8,6)(-6,0)
|
intercepts of y=2x-5
|
intercepts\:y=2x-5
|
f(x)=x^2-4x+3
|
f(x)=x^{2}-4x+3
|
asymptotes of f(x)= 1/((x+2)(x-4))
|
asymptotes\:f(x)=\frac{1}{(x+2)(x-4)}
|
intercepts of (5x+10)/(-2x^2-6x-4)
|
intercepts\:\frac{5x+10}{-2x^{2}-6x-4}
|
inflection points of f(x)=(24)/(x^2+12)
|
inflection\:points\:f(x)=\frac{24}{x^{2}+12}
|
inverse of f(x)=(e^x-e^{-x})/2
|
inverse\:f(x)=\frac{e^{x}-e^{-x}}{2}
|
domain of f(x)=(2/5)^{x+2}-1
|
domain\:f(x)=(\frac{2}{5})^{x+2}-1
|
intercepts of f(x)=5x^2-38x-63
|
intercepts\:f(x)=5x^{2}-38x-63
|
range of (x^2)/((x+2)(x-3))
|
range\:\frac{x^{2}}{(x+2)(x-3)}
|
range of 4/(x+3)
|
range\:\frac{4}{x+3}
|
asymptotes of y=(8x+1)/(x-8)
|
asymptotes\:y=\frac{8x+1}{x-8}
|