parity (sin(6theta))/(theta+tan(8theta))
|
parity\:\frac{\sin(6\theta)}{\theta+\tan(8\theta)}
|
inverse of f(x)=(2x^4+7)/(1+x^2)
|
inverse\:f(x)=\frac{2x^{4}+7}{1+x^{2}}
|
inverse of f(x)= 5/(x-3)
|
inverse\:f(x)=\frac{5}{x-3}
|
domain of f(x)=13-x^2
|
domain\:f(x)=13-x^{2}
|
parallel y-6=-3(x-8),\at (1,6)
|
parallel\:y-6=-3(x-8),\at\:(1,6)
|
inverse of sqrt(x-5)+1
|
inverse\:\sqrt{x-5}+1
|
inverse of y=(x+3)/(x-1)
|
inverse\:y=\frac{x+3}{x-1}
|
inverse of f(x)= x/(x+7)
|
inverse\:f(x)=\frac{x}{x+7}
|
asymptotes of f(x)=log_{2}(x)
|
asymptotes\:f(x)=\log_{2}(x)
|
midpoint (-7,5)(5,9)
|
midpoint\:(-7,5)(5,9)
|
inverse of f(x)=-sqrt(x+2)
|
inverse\:f(x)=-\sqrt{x+2}
|
domain of f(x)=sqrt(x+5)-(sqrt(1-x))/x
|
domain\:f(x)=\sqrt{x+5}-\frac{\sqrt{1-x}}{x}
|
parity arctan(tan(theta))
|
parity\:\arctan(\tan(\theta))
|
inverse of f(x)= 3/(x-1)+2
|
inverse\:f(x)=\frac{3}{x-1}+2
|
inverse of f(x)=3x^3+5
|
inverse\:f(x)=3x^{3}+5
|
extreme points of f(x)=((e^x-e^{-x}))/7
|
extreme\:points\:f(x)=\frac{(e^{x}-e^{-x})}{7}
|
extreme points of f(x)=x^3-2x^2-x+1
|
extreme\:points\:f(x)=x^{3}-2x^{2}-x+1
|
inverse of f(x)=(1-x)/(x+2)
|
inverse\:f(x)=\frac{1-x}{x+2}
|
asymptotes of f(x)= 1/(x-3)-2
|
asymptotes\:f(x)=\frac{1}{x-3}-2
|
inverse of f(x)=(x-4)^2+3
|
inverse\:f(x)=(x-4)^{2}+3
|
inverse of f(x)=5+e^{2x+4}
|
inverse\:f(x)=5+e^{2x+4}
|
asymptotes of f(x)=(x^2-9)/(x(x-3))
|
asymptotes\:f(x)=\frac{x^{2}-9}{x(x-3)}
|
asymptotes of (9x)/(x+8)
|
asymptotes\:\frac{9x}{x+8}
|
slope intercept of 2y=3x+7
|
slope\:intercept\:2y=3x+7
|
asymptotes of (2x^2+10x+12)/(x^2-9)
|
asymptotes\:\frac{2x^{2}+10x+12}{x^{2}-9}
|
inverse of f(x)=-7/6 x+7
|
inverse\:f(x)=-\frac{7}{6}x+7
|
intercepts of-x^2+6x-9
|
intercepts\:-x^{2}+6x-9
|
midpoint (5,-6)(5,6)
|
midpoint\:(5,-6)(5,6)
|
periodicity of f(x)=sin((6pi x)/7)
|
periodicity\:f(x)=\sin(\frac{6\pi\:x}{7})
|
inverse of (x+4)^5
|
inverse\:(x+4)^{5}
|
line (-4,-5)(6,3)
|
line\:(-4,-5)(6,3)
|
cos^3(x)
|
\cos^{3}(x)
|
domain of f(x)=cos(1/x)+log_{10}(x+1)
|
domain\:f(x)=\cos(\frac{1}{x})+\log_{10}(x+1)
|
parity f(x)=sqrt(x)-6
|
parity\:f(x)=\sqrt{x}-6
|
asymptotes of f(x)=(3x^2)/(x^2-1)
|
asymptotes\:f(x)=\frac{3x^{2}}{x^{2}-1}
|
domain of (x^2-9)/(x^2-x-12)
|
domain\:\frac{x^{2}-9}{x^{2}-x-12}
|
slope of 15x+5y=7
|
slope\:15x+5y=7
|
symmetry x^2-x
|
symmetry\:x^{2}-x
|
slope of S=65000t+88000
|
slope\:S=65000t+88000
|
intercepts of f(x)=2x^4-8x^3+6x^2
|
intercepts\:f(x)=2x^{4}-8x^{3}+6x^{2}
|
inverse of x/(x(x-1))
|
inverse\:\frac{x}{x(x-1)}
|
domain of f(x)=-4^x
|
domain\:f(x)=-4^{x}
|
domain of 3/(sqrt(x^2-9))
|
domain\:\frac{3}{\sqrt{x^{2}-9}}
|
inverse of f(x)=2^x
|
inverse\:f(x)=2^{x}
|
domain of f(x)=sqrt(3x-8)
|
domain\:f(x)=\sqrt{3x-8}
|
shift f(x)=-6sin(3x+(pi)/2)
|
shift\:f(x)=-6\sin(3x+\frac{\pi}{2})
|
line (0,0)(2,1)
|
line\:(0,0)(2,1)
|
range of f(x)=x^2-3x+2
|
range\:f(x)=x^{2}-3x+2
|
inflection points of x/(ln(x))
|
inflection\:points\:\frac{x}{\ln(x)}
|
range of sqrt(x^2+25)
|
range\:\sqrt{x^{2}+25}
|
inverse of f(x)=(5x-15)/2
|
inverse\:f(x)=\frac{5x-15}{2}
|
domain of f(x)= x/(2x+3)
|
domain\:f(x)=\frac{x}{2x+3}
|
inverse of f(x)=x-2/3
|
inverse\:f(x)=x-\frac{2}{3}
|
extreme points of y=-x^2+12x-16
|
extreme\:points\:y=-x^{2}+12x-16
|
slope of 2x-y=4
|
slope\:2x-y=4
|
y=4x^2
|
y=4x^{2}
|
line y=-2x-3
|
line\:y=-2x-3
|
inverse of-(x-1)^5
|
inverse\:-(x-1)^{5}
|
extreme points of y=(x+1)(3-x)
|
extreme\:points\:y=(x+1)(3-x)
|
inverse of y=sqrt(x-2)
|
inverse\:y=\sqrt{x-2}
|
range of f(x)=(x+4)/(x-3)
|
range\:f(x)=\frac{x+4}{x-3}
|
range of f(x)=-2sqrt(x+3)-1
|
range\:f(x)=-2\sqrt{x+3}-1
|
inverse of f(x)=sqrt(8)
|
inverse\:f(x)=\sqrt{8}
|
inverse of 2+sqrt(x+3)
|
inverse\:2+\sqrt{x+3}
|
amplitude of-3sin(x)
|
amplitude\:-3\sin(x)
|
inverse of f(x)=-4x-16
|
inverse\:f(x)=-4x-16
|
domain of f(x)=(x^2-4)/(x^2)
|
domain\:f(x)=\frac{x^{2}-4}{x^{2}}
|
domain of (x^2-16)/(x+4)
|
domain\:\frac{x^{2}-16}{x+4}
|
symmetry y^2-4y-6x-5=0
|
symmetry\:y^{2}-4y-6x-5=0
|
inverse of f(x)= 3/(x^2+2x)
|
inverse\:f(x)=\frac{3}{x^{2}+2x}
|
asymptotes of f(x)=(x^2+9x+8)/(x-1)
|
asymptotes\:f(x)=\frac{x^{2}+9x+8}{x-1}
|
inverse of f(x)=9x+2
|
inverse\:f(x)=9x+2
|
domain of f(x)=7-sqrt(x)
|
domain\:f(x)=7-\sqrt{x}
|
y= 1/(x^2)
|
y=\frac{1}{x^{2}}
|
domain of 3/(x+2)+x/(x+2)
|
domain\:\frac{3}{x+2}+\frac{x}{x+2}
|
intercepts of (8x+36)/(10x-5)
|
intercepts\:\frac{8x+36}{10x-5}
|
extreme points of f(x)=(e^x)/x
|
extreme\:points\:f(x)=\frac{e^{x}}{x}
|
inverse of sqrt(6x-24)
|
inverse\:\sqrt{6x-24}
|
intercepts of x^2-16
|
intercepts\:x^{2}-16
|
critical points of x/(x^2+14x+48)
|
critical\:points\:\frac{x}{x^{2}+14x+48}
|
parity cot(x)*arccsc(x)
|
parity\:\cot(x)\cdot\:\arccsc(x)
|
domain of sqrt(8-x)
|
domain\:\sqrt{8-x}
|
domain of sqrt(9-2x)
|
domain\:\sqrt{9-2x}
|
slope of 5x-3y=6
|
slope\:5x-3y=6
|
asymptotes of f(x)=(9x)/(x^2+4x-5)
|
asymptotes\:f(x)=\frac{9x}{x^{2}+4x-5}
|
asymptotes of f(x)= 2/(x-3)
|
asymptotes\:f(x)=\frac{2}{x-3}
|
line (3,2),(8,12)
|
line\:(3,2),(8,12)
|
symmetry (x^2+1)/(x+1)
|
symmetry\:\frac{x^{2}+1}{x+1}
|
domain of f(x)=(-7)/(2t^{3/2)}
|
domain\:f(x)=\frac{-7}{2t^{\frac{3}{2}}}
|
distance (1,5)\land (0,0)
|
distance\:(1,5)\land\:(0,0)
|
slope of y= 1/2 x+1
|
slope\:y=\frac{1}{2}x+1
|
domain of f(x)=sqrt(x)+6
|
domain\:f(x)=\sqrt{x}+6
|
domain of f(x)=\sqrt[3]{1-sqrt(x)}
|
domain\:f(x)=\sqrt[3]{1-\sqrt{x}}
|
midpoint (5,1)(9,5)
|
midpoint\:(5,1)(9,5)
|
inverse of f(x)=(x^2-1)
|
inverse\:f(x)=(x^{2}-1)
|
domain of f(x)=1-1/x
|
domain\:f(x)=1-\frac{1}{x}
|
domain of f(x)=ln(sqrt(x))
|
domain\:f(x)=\ln(\sqrt{x})
|
critical points of f(x)= x/(x^2+6x+5)
|
critical\:points\:f(x)=\frac{x}{x^{2}+6x+5}
|
domain of f(x)=sqrt(-2x+14)
|
domain\:f(x)=\sqrt{-2x+14}
|
critical points of xe^{-8x}
|
critical\:points\:xe^{-8x}
|