inflection points of (x-3)sqrt(x)
|
inflection\:points\:(x-3)\sqrt{x}
|
slope of y=-6x+3
|
slope\:y=-6x+3
|
range of f(x)=(x^3)/(x+1)
|
range\:f(x)=\frac{x^{3}}{x+1}
|
domain of f(x)=(2-x)/((x-1)(2x-1))
|
domain\:f(x)=\frac{2-x}{(x-1)(2x-1)}
|
inverse of f(x)=5sin^{-1}(x^3)
|
inverse\:f(x)=5\sin^{-1}(x^{3})
|
parity f(x)=1+sec(x)
|
parity\:f(x)=1+\sec(x)
|
line (213,0)(250,1.1*10^5)
|
line\:(213,0)(250,1.1\cdot\:10^{5})
|
domain of f(x)=3x^2+2x-4
|
domain\:f(x)=3x^{2}+2x-4
|
intercepts of x^2+4x-5
|
intercepts\:x^{2}+4x-5
|
line (-2,-5),(6,-5)
|
line\:(-2,-5),(6,-5)
|
domain of sqrt(3-\sqrt{x^2-16)}
|
domain\:\sqrt{3-\sqrt{x^{2}-16}}
|
domain of f(x)=(x+2)/(x-3)
|
domain\:f(x)=\frac{x+2}{x-3}
|
intercepts of f(x)=2(x+2)(x+6)
|
intercepts\:f(x)=2(x+2)(x+6)
|
inverse of f(x)=1-e^x
|
inverse\:f(x)=1-e^{x}
|
slope of y=9x-2
|
slope\:y=9x-2
|
asymptotes of 3^x-3
|
asymptotes\:3^{x}-3
|
asymptotes of (x+6)/(x^2+4x-12)
|
asymptotes\:\frac{x+6}{x^{2}+4x-12}
|
symmetry x^2-4x
|
symmetry\:x^{2}-4x
|
asymptotes of f(x)=(-4x^2+12)/(2x+2)
|
asymptotes\:f(x)=\frac{-4x^{2}+12}{2x+2}
|
inflection points of f(x)=x^4-12x^3
|
inflection\:points\:f(x)=x^{4}-12x^{3}
|
range of f(x)=3-sqrt(4-x^2)
|
range\:f(x)=3-\sqrt{4-x^{2}}
|
line (2,3)(4,8)
|
line\:(2,3)(4,8)
|
domain of x(sqrt(x-6))^2
|
domain\:x(\sqrt{x-6})^{2}
|
distance (-1,1)(-2,-1)
|
distance\:(-1,1)(-2,-1)
|
inverse of 2x^2+7
|
inverse\:2x^{2}+7
|
critical points of f(x)=x^4-8x^2+8
|
critical\:points\:f(x)=x^{4}-8x^{2}+8
|
asymptotes of f(x)=((x+1))/((x))
|
asymptotes\:f(x)=\frac{(x+1)}{(x)}
|
extreme points of f(x)=x^2+3
|
extreme\:points\:f(x)=x^{2}+3
|
intercepts of f(x)=5x-4
|
intercepts\:f(x)=5x-4
|
inverse of f(x)=(x+3)/(x-5)
|
inverse\:f(x)=\frac{x+3}{x-5}
|
inverse of y=(x+8)^2
|
inverse\:y=(x+8)^{2}
|
perpendicular-7-2y=4
|
perpendicular\:-7-2y=4
|
domain of f(x)=sqrt(5x-40)
|
domain\:f(x)=\sqrt{5x-40}
|
domain of f(x)= x/(x^2)
|
domain\:f(x)=\frac{x}{x^{2}}
|
domain of f(x)=sqrt(2x+5)+x+2
|
domain\:f(x)=\sqrt{2x+5}+x+2
|
asymptotes of f(x)=(x-2)/(x-4)
|
asymptotes\:f(x)=\frac{x-2}{x-4}
|
inverse of f(x)=((x-7))/((x+7))
|
inverse\:f(x)=\frac{(x-7)}{(x+7)}
|
range of 17/4 (x+2)^2
|
range\:\frac{17}{4}(x+2)^{2}
|
range of 1/5 x^3-4
|
range\:\frac{1}{5}x^{3}-4
|
inverse of 9+(8+x)^{1/2}
|
inverse\:9+(8+x)^{\frac{1}{2}}
|
slope intercept of 7x+6y=17
|
slope\:intercept\:7x+6y=17
|
inverse of f(x)=5[(x+3)/4-2]^2+6
|
inverse\:f(x)=5[\frac{x+3}{4}-2]^{2}+6
|
midpoint (1/2 , 1/3)(3/2 , 5/3)
|
midpoint\:(\frac{1}{2},\frac{1}{3})(\frac{3}{2},\frac{5}{3})
|
extreme points of f(x)=-5x^2+6x-3
|
extreme\:points\:f(x)=-5x^{2}+6x-3
|
perpendicular y=2x+7,\at (4,-8)
|
perpendicular\:y=2x+7,\at\:(4,-8)
|
slope of y=3x+7
|
slope\:y=3x+7
|
inverse of f(x)= x/(sqrt(1-x^2))
|
inverse\:f(x)=\frac{x}{\sqrt{1-x^{2}}}
|
range of f(x)=-1/2 |x-6|+1
|
range\:f(x)=-\frac{1}{2}|x-6|+1
|
domain of f(x)=sqrt(4x)
|
domain\:f(x)=\sqrt{4x}
|
range of f(x)=(2x+5)/(x-3)
|
range\:f(x)=\frac{2x+5}{x-3}
|
asymptotes of f(x)= 5/(x^2)
|
asymptotes\:f(x)=\frac{5}{x^{2}}
|
slope of y=16
|
slope\:y=16
|
inverse of f(x)=(\sqrt[5]{x}+7)^7
|
inverse\:f(x)=(\sqrt[5]{x}+7)^{7}
|
range of log_{2}(x-3)
|
range\:\log_{2}(x-3)
|
inverse of 1/2 x-5
|
inverse\:\frac{1}{2}x-5
|
domain of f(x)=4x^2
|
domain\:f(x)=4x^{2}
|
inverse of f(x)=5x^3+2
|
inverse\:f(x)=5x^{3}+2
|
extreme points of f(x)=(x-1)^2(x-2)^3
|
extreme\:points\:f(x)=(x-1)^{2}(x-2)^{3}
|
monotone intervals x^4-12x^3+48x^2-64x
|
monotone\:intervals\:x^{4}-12x^{3}+48x^{2}-64x
|
inverse of f(x)=(6x-1)/(2x+9)
|
inverse\:f(x)=\frac{6x-1}{2x+9}
|
perpendicular y-4= 4/5 (x-5)(-4-2)
|
perpendicular\:y-4=\frac{4}{5}(x-5)(-4-2)
|
perpendicular y= 3/5 x+4
|
perpendicular\:y=\frac{3}{5}x+4
|
asymptotes of f(x)=(x+3)/(x^2-4)
|
asymptotes\:f(x)=\frac{x+3}{x^{2}-4}
|
extreme points of x-4/(x^2)
|
extreme\:points\:x-\frac{4}{x^{2}}
|
domain of f(x)=3x^2-1
|
domain\:f(x)=3x^{2}-1
|
distance (0,0)(6,1)
|
distance\:(0,0)(6,1)
|
domain of (x+4)^2-6
|
domain\:(x+4)^{2}-6
|
domain of f(x)= 1/(x^3-6x^2+5x+12)
|
domain\:f(x)=\frac{1}{x^{3}-6x^{2}+5x+12}
|
extreme points of 113t-0.5t^4+900
|
extreme\:points\:113t-0.5t^{4}+900
|
extreme points of f(x)=3x^{2/3}-x
|
extreme\:points\:f(x)=3x^{\frac{2}{3}}-x
|
inverse of y=5x-4
|
inverse\:y=5x-4
|
slope of 6x+y=10
|
slope\:6x+y=10
|
vertex f(x)=y=x^2-6x
|
vertex\:f(x)=y=x^{2}-6x
|
midpoint (-1,5)(-6,-2)
|
midpoint\:(-1,5)(-6,-2)
|
domain of f(x)=ln(x)+2
|
domain\:f(x)=\ln(x)+2
|
domain of (3x^2-7x-6)/(x^2-16x+55)
|
domain\:\frac{3x^{2}-7x-6}{x^{2}-16x+55}
|
extreme points of x^2-2x+3
|
extreme\:points\:x^{2}-2x+3
|
inverse of f(x)=-x+10
|
inverse\:f(x)=-x+10
|
asymptotes of f(x)= 2/((x-2)^3)
|
asymptotes\:f(x)=\frac{2}{(x-2)^{3}}
|
range of-x^2+4x
|
range\:-x^{2}+4x
|
inverse of (4x^2-1)/(2x-1)
|
inverse\:\frac{4x^{2}-1}{2x-1}
|
critical points of f(x)=6x^3+x^2+6x
|
critical\:points\:f(x)=6x^{3}+x^{2}+6x
|
inverse of f(x)=3log_{2}(x+5)+7
|
inverse\:f(x)=3\log_{2}(x+5)+7
|
asymptotes of f(x)=(3-2x)/(2-3x)
|
asymptotes\:f(x)=\frac{3-2x}{2-3x}
|
parity f(x)=5x^3-2x+1
|
parity\:f(x)=5x^{3}-2x+1
|
intercepts of f(x)=x^2-3x-4
|
intercepts\:f(x)=x^{2}-3x-4
|
domain of x/(6x-5)
|
domain\:\frac{x}{6x-5}
|
inverse of h(x)=(4-2x)/(5x+3)
|
inverse\:h(x)=\frac{4-2x}{5x+3}
|
inverse of y=7.5x-300
|
inverse\:y=7.5x-300
|
range of sqrt(x)+3
|
range\:\sqrt{x}+3
|
asymptotes of f(x)= 1/(x+3)+2
|
asymptotes\:f(x)=\frac{1}{x+3}+2
|
inverse of f(x)=5(\sqrt[3]{x}+3)
|
inverse\:f(x)=5(\sqrt[3]{x}+3)
|
domain of ln(1/(x-4))
|
domain\:\ln(\frac{1}{x-4})
|
line y=2x-5
|
line\:y=2x-5
|
range of f(x)=-(x^2)
|
range\:f(x)=-(x^{2})
|
domain of f(x)=4x+50
|
domain\:f(x)=4x+50
|
inverse of f(x)=((5x-6))/((2x-2))
|
inverse\:f(x)=\frac{(5x-6)}{(2x-2)}
|
distance (0,-5)(7,2)
|
distance\:(0,-5)(7,2)
|
domain of f(x)=sqrt(3-|x-2|)
|
domain\:f(x)=\sqrt{3-|x-2|}
|
asymptotes of f(x)=(x^2-3x-4)/(2x+2)
|
asymptotes\:f(x)=\frac{x^{2}-3x-4}{2x+2}
|