asymptotes of (x^2+x)/(3-x)
|
asymptotes\:\frac{x^{2}+x}{3-x}
|
domain of sin(e^{-x})
|
domain\:\sin(e^{-x})
|
critical points of f(x)=-9x^2+2x^3
|
critical\:points\:f(x)=-9x^{2}+2x^{3}
|
intercepts of y=6tan(0.2x)
|
intercepts\:y=6\tan(0.2x)
|
asymptotes of arctan(x/(2-x))
|
asymptotes\:\arctan(\frac{x}{2-x})
|
slope intercept of y+2=4(x-3)
|
slope\:intercept\:y+2=4(x-3)
|
inverse of f(x)=2-x^2
|
inverse\:f(x)=2-x^{2}
|
asymptotes of x/(x^2+9)
|
asymptotes\:\frac{x}{x^{2}+9}
|
critical points of (x^2-x)/(x^2-4x+3)
|
critical\:points\:\frac{x^{2}-x}{x^{2}-4x+3}
|
distance (-2,1)(4,3)
|
distance\:(-2,1)(4,3)
|
range of-x^2+6x+1
|
range\:-x^{2}+6x+1
|
inflection points of 3x^{2/3}-x
|
inflection\:points\:3x^{\frac{2}{3}}-x
|
inverse of f(x)=6x-18
|
inverse\:f(x)=6x-18
|
midpoint (4,4)(5,5)
|
midpoint\:(4,4)(5,5)
|
asymptotes of f(x)=((x-5))/((2x+3))
|
asymptotes\:f(x)=\frac{(x-5)}{(2x+3)}
|
domain of f(x)=(4x-4)/(2x^{(2)}-1)
|
domain\:f(x)=(4x-4)/(2x^{(2)}-1)
|
shift 0.02sin(0.02x+1.59)+1
|
shift\:0.02\sin(0.02x+1.59)+1
|
domain of f(x)=(x^2+2)/8
|
domain\:f(x)=\frac{x^{2}+2}{8}
|
domain of 4-x^4
|
domain\:4-x^{4}
|
extreme points of f(x)=4x^3-48x-7
|
extreme\:points\:f(x)=4x^{3}-48x-7
|
critical points of f(x)=(x-2)^2(x-1)
|
critical\:points\:f(x)=(x-2)^{2}(x-1)
|
monotone intervals y= x/(x^2+4)
|
monotone\:intervals\:y=\frac{x}{x^{2}+4}
|
critical points of 0.001x^3+7x+54
|
critical\:points\:0.001x^{3}+7x+54
|
range of y=sqrt(5-2x)
|
range\:y=\sqrt{5-2x}
|
domain of (3x)/(x+4)
|
domain\:\frac{3x}{x+4}
|
inverse of f(x)=sqrt(6x)
|
inverse\:f(x)=\sqrt{6x}
|
extreme points of f(x)=x^4-4x^3+3
|
extreme\:points\:f(x)=x^{4}-4x^{3}+3
|
parity f(x)=e^{x^2-1}
|
parity\:f(x)=e^{x^{2}-1}
|
asymptotes of y=(2x^2+x-6)/(x^2+x-30)
|
asymptotes\:y=\frac{2x^{2}+x-6}{x^{2}+x-30}
|
inverse of f(x)=6x^{1/4}+5
|
inverse\:f(x)=6x^{\frac{1}{4}}+5
|
slope intercept of x-y=7
|
slope\:intercept\:x-y=7
|
parity f(x)=sqrt((-2x)/(1-x^2))
|
parity\:f(x)=\sqrt{\frac{-2x}{1-x^{2}}}
|
inverse of f(x)=3(x+1)^2-15
|
inverse\:f(x)=3(x+1)^{2}-15
|
domain of (6x)/(x+7)
|
domain\:\frac{6x}{x+7}
|
extreme points of f(x)=x^2-3x+2
|
extreme\:points\:f(x)=x^{2}-3x+2
|
inverse of f(x)=4arccot((3x)/4-2/3)
|
inverse\:f(x)=4\arccot(\frac{3x}{4}-\frac{2}{3})
|
amplitude of-sin(x)
|
amplitude\:-\sin(x)
|
intercepts of 9x^4-36x^3+20x^2+32x-33
|
intercepts\:9x^{4}-36x^{3}+20x^{2}+32x-33
|
periodicity of f(x)=2tan(4x)
|
periodicity\:f(x)=2\tan(4x)
|
intercepts of f(x)=((3x^3-3x))/((x-1))
|
intercepts\:f(x)=\frac{(3x^{3}-3x)}{(x-1)}
|
slope of 3x-2y=12
|
slope\:3x-2y=12
|
range of f(x)=sqrt(x-9)
|
range\:f(x)=\sqrt{x-9}
|
domain of f(x)= 1/x+3
|
domain\:f(x)=\frac{1}{x}+3
|
line (1,2)(-3,-2)
|
line\:(1,2)(-3,-2)
|
parallel y=3x+7
|
parallel\:y=3x+7
|
inverse of f(x)=sqrt(1-x)
|
inverse\:f(x)=\sqrt{1-x}
|
line (8,4)(22,5)
|
line\:(8,4)(22,5)
|
extreme points of f(x)= x/(x^2+36)
|
extreme\:points\:f(x)=\frac{x}{x^{2}+36}
|
inverse of (x+2)^3
|
inverse\:(x+2)^{3}
|
domain of f(x)=sqrt(64)
|
domain\:f(x)=\sqrt{64}
|
parity y(x)=sin(cos(tan(pi x)))
|
parity\:y(x)=\sin(\cos(\tan(\pi\:x)))
|
domain of f(x)=(-1)/(2sqrt(2-x))
|
domain\:f(x)=\frac{-1}{2\sqrt{2-x}}
|
inverse of f(x)=4sqrt(x+7)+5
|
inverse\:f(x)=4\sqrt{x+7}+5
|
extreme points of f(x)=2x^4+8x^3+5x^2
|
extreme\:points\:f(x)=2x^{4}+8x^{3}+5x^{2}
|
range of f(x)=((1-x))/((2x-1))
|
range\:f(x)=\frac{(1-x)}{(2x-1)}
|
inverse of 3/(7+x)
|
inverse\:\frac{3}{7+x}
|
domain of (4x-20)/(x^2-2x-15)
|
domain\:\frac{4x-20}{x^{2}-2x-15}
|
domain of \sqrt[3]{x-9}
|
domain\:\sqrt[3]{x-9}
|
range of sqrt((x+5)/(x-2))
|
range\:\sqrt{\frac{x+5}{x-2}}
|
domain of f(x)=-0.5sqrt(x+6)+2
|
domain\:f(x)=-0.5\sqrt{x+6}+2
|
x-2
|
x-2
|
domain of f(x)=(sqrt(4-x^2))/(x^2+6x-7)
|
domain\:f(x)=\frac{\sqrt{4-x^{2}}}{x^{2}+6x-7}
|
domain of (-2-3x)/(x-1)
|
domain\:\frac{-2-3x}{x-1}
|
domain of-x+9
|
domain\:-x+9
|
range of f(x)= x/(x^2-4x+3)
|
range\:f(x)=\frac{x}{x^{2}-4x+3}
|
domain of y=(3x^2-3x)/(x^2+x-12)
|
domain\:y=\frac{3x^{2}-3x}{x^{2}+x-12}
|
domain of ((x-8))/((x-1)(x+2))
|
domain\:\frac{(x-8)}{(x-1)(x+2)}
|
domain of (-7)/(2x^{3/2)}
|
domain\:\frac{-7}{2x^{\frac{3}{2}}}
|
domain of f(x)=9x-7x^2
|
domain\:f(x)=9x-7x^{2}
|
periodicity of f(x)=3sin((6x)/7+2pi)
|
periodicity\:f(x)=3\sin(\frac{6x}{7}+2\pi)
|
domain of (x+6)/(x-5)
|
domain\:\frac{x+6}{x-5}
|
domain of sqrt(x)+1
|
domain\:\sqrt{x}+1
|
inverse of f(x)=3x^2-8
|
inverse\:f(x)=3x^{2}-8
|
inverse of f(x)=(3x+4)/(-5x-7)
|
inverse\:f(x)=\frac{3x+4}{-5x-7}
|
domain of f(x)= x/(x-4)
|
domain\:f(x)=\frac{x}{x-4}
|
domain of (x+3)^2-1
|
domain\:(x+3)^{2}-1
|
extreme points of f(x)=-5x^3+15x+7
|
extreme\:points\:f(x)=-5x^{3}+15x+7
|
intercepts of f(x)=(x^2-16)/(x+4)
|
intercepts\:f(x)=\frac{x^{2}-16}{x+4}
|
critical points of 2x^3-7x^2+2x+3
|
critical\:points\:2x^{3}-7x^{2}+2x+3
|
perpendicular y= 1/3 x+1
|
perpendicular\:y=\frac{1}{3}x+1
|
intercepts of (2x^2+2x)/(-3x^2-18x-15)
|
intercepts\:\frac{2x^{2}+2x}{-3x^{2}-18x-15}
|
domain of f(x)=(8x^2-8)/(3x)
|
domain\:f(x)=\frac{8x^{2}-8}{3x}
|
inverse of f(x)=1+(6+x)^{1/2}
|
inverse\:f(x)=1+(6+x)^{\frac{1}{2}}
|
range of-6sqrt(x)
|
range\:-6\sqrt{x}
|
range of f(x)=2x^2+4,0<= x<= 8
|
range\:f(x)=2x^{2}+4,0\le\:x\le\:8
|
asymptotes of f(x)=(x^3-4x)/(-3x^2-9x)
|
asymptotes\:f(x)=\frac{x^{3}-4x}{-3x^{2}-9x}
|
range of f(x)=5
|
range\:f(x)=5
|
critical points of x/(x^2-25)
|
critical\:points\:\frac{x}{x^{2}-25}
|
line (-5,7)m=0
|
line\:(-5,7)m=0
|
inverse of f(x)=sqrt(2x-4)+8
|
inverse\:f(x)=\sqrt{2x-4}+8
|
y=-x^2
|
y=-x^{2}
|
range of log_{5}(x)+2
|
range\:\log_{5}(x)+2
|
inverse of f(x)=2x-4
|
inverse\:f(x)=2x-4
|
parallel x-3y=6
|
parallel\:x-3y=6
|
range of 3x^2+1
|
range\:3x^{2}+1
|
asymptotes of f(x)=(x+9)/(x^2+6x)
|
asymptotes\:f(x)=\frac{x+9}{x^{2}+6x}
|
inflection points of f(x)= x/(x^2-9)
|
inflection\:points\:f(x)=\frac{x}{x^{2}-9}
|
slope of m= 4/3 ,\at (-4,-9)
|
slope\:m=\frac{4}{3},\at\:(-4,-9)
|
critical points of sqrt(x^3-1)
|
critical\:points\:\sqrt{x^{3}-1}
|
symmetry x^2+2x-8
|
symmetry\:x^{2}+2x-8
|