periodicity of 2tan(-x/2-2pi)-2
|
periodicity\:2\tan(-\frac{x}{2}-2\pi)-2
|
extreme points of x^2+2x+7
|
extreme\:points\:x^{2}+2x+7
|
range of (x-1)/2
|
range\:\frac{x-1}{2}
|
extreme points of f(x)=cos(x)
|
extreme\:points\:f(x)=\cos(x)
|
extreme points of f(x)=x^2e^{-5x}
|
extreme\:points\:f(x)=x^{2}e^{-5x}
|
domain of f(x)=4x^2-3
|
domain\:f(x)=4x^{2}-3
|
slope of 7y+42=-14x
|
slope\:7y+42=-14x
|
domain of sqrt(x-7)*sqrt(x-2)
|
domain\:\sqrt{x-7}\cdot\:\sqrt{x-2}
|
intercepts of f(x)=y=-1.4x-1
|
intercepts\:f(x)=y=-1.4x-1
|
domain of 1/(1-x^2)
|
domain\:\frac{1}{1-x^{2}}
|
inverse of f(x)=2x^7-9
|
inverse\:f(x)=2x^{7}-9
|
midpoint (-14,-15)(-6,16)
|
midpoint\:(-14,-15)(-6,16)
|
inverse of f(x)=(x+2)/(3x-4)
|
inverse\:f(x)=\frac{x+2}{3x-4}
|
domain of csc(x)
|
domain\:\csc(x)
|
inverse of f(x)=7.5x+1500
|
inverse\:f(x)=7.5x+1500
|
extreme points of x^2+2x-3
|
extreme\:points\:x^{2}+2x-3
|
monotone intervals (x^2)/(x^2-1)
|
monotone\:intervals\:\frac{x^{2}}{x^{2}-1}
|
critical points of (x^2-x-2)/(x^2-6x+9)
|
critical\:points\:\frac{x^{2}-x-2}{x^{2}-6x+9}
|
midpoint (-3,4)(-6,-1)
|
midpoint\:(-3,4)(-6,-1)
|
parallel y=5,\at (-7,-5)
|
parallel\:y=5,\at\:(-7,-5)
|
slope of y=6x-5
|
slope\:y=6x-5
|
intercepts of f(x)=x^2+4x+6
|
intercepts\:f(x)=x^{2}+4x+6
|
inverse of 5x^2-5
|
inverse\:5x^{2}-5
|
domain of 2x^2+4x-1
|
domain\:2x^{2}+4x-1
|
inflection points of f(x)=3x^4-4x^3
|
inflection\:points\:f(x)=3x^{4}-4x^{3}
|
inverse of f(x)=(14)/(x+3)
|
inverse\:f(x)=\frac{14}{x+3}
|
domain of f(x)=(x+2)/(x+1)
|
domain\:f(x)=\frac{x+2}{x+1}
|
intercepts of x^3-9x^2+4x-36
|
intercepts\:x^{3}-9x^{2}+4x-36
|
range of sqrt(2x)
|
range\:\sqrt{2x}
|
amplitude of 4tan(x)
|
amplitude\:4\tan(x)
|
asymptotes of x^3
|
asymptotes\:x^{3}
|
domain of ((x/(2x^2-5)))/(sqrt(x))
|
domain\:\frac{(\frac{x}{2x^{2}-5})}{\sqrt{x}}
|
inverse of f(x)=-sqrt(36-(1.2x+5)^2)+3
|
inverse\:f(x)=-\sqrt{36-(1.2x+5)^{2}}+3
|
inverse of f(x)=7x^3+5
|
inverse\:f(x)=7x^{3}+5
|
critical points of cos(x)+sin(x)
|
critical\:points\:\cos(x)+\sin(x)
|
monotone intervals (2x^3)/(x^3-1)
|
monotone\:intervals\:\frac{2x^{3}}{x^{3}-1}
|
inverse of f(x)=x^2-2x+6
|
inverse\:f(x)=x^{2}-2x+6
|
line (5,-8)(2,7)
|
line\:(5,-8)(2,7)
|
domain of f(x)=ln(e^x-2)
|
domain\:f(x)=\ln(e^{x}-2)
|
inverse of y=-2/3 x-5
|
inverse\:y=-\frac{2}{3}x-5
|
inverse of f(x)=2x+10
|
inverse\:f(x)=2x+10
|
domain of f(x)=(3sqrt(x+5))/(x+8)
|
domain\:f(x)=\frac{3\sqrt{x+5}}{x+8}
|
monotone intervals \sqrt[3]{x}
|
monotone\:intervals\:\sqrt[3]{x}
|
intercepts of (-10.4)
|
intercepts\:(-10.4)
|
inverse of f(x)=3x-2
|
inverse\:f(x)=3x-2
|
critical points of x/(1-x)
|
critical\:points\:\frac{x}{1-x}
|
inverse of cos(x)-3
|
inverse\:\cos(x)-3
|
line (4,1)(6,0)
|
line\:(4,1)(6,0)
|
inverse of f(x)=-sqrt(x+3)
|
inverse\:f(x)=-\sqrt{x+3}
|
domain of sqrt(6x+54)
|
domain\:\sqrt{6x+54}
|
domain of f(x)=(4x)/((x+5)^2)
|
domain\:f(x)=\frac{4x}{(x+5)^{2}}
|
y=2x
|
y=2x
|
slope of (12x}{13}-\frac{5y)/7 =(6y)/7+5
|
slope\:\frac{12x}{13}-\frac{5y}{7}=\frac{6y}{7}+5
|
extreme points of f(x)=-x^3+3x^2-7
|
extreme\:points\:f(x)=-x^{3}+3x^{2}-7
|
slope of (3,5)5x-6y=4
|
slope\:(3,5)5x-6y=4
|
shift 6tan(8x+40)
|
shift\:6\tan(8x+40)
|
line (-5,-4),(1,4)
|
line\:(-5,-4),(1,4)
|
extreme points of f(x)=2x^3-3x^2-432x
|
extreme\:points\:f(x)=2x^{3}-3x^{2}-432x
|
range of (x^2)/(x^2-1)
|
range\:\frac{x^{2}}{x^{2}-1}
|
symmetry y=-6x^3+2x
|
symmetry\:y=-6x^{3}+2x
|
parity f(x)=x^2|x|+3
|
parity\:f(x)=x^{2}|x|+3
|
intercepts of f(x)=2x^2+8x
|
intercepts\:f(x)=2x^{2}+8x
|
range of 4/(x-3)
|
range\:\frac{4}{x-3}
|
inverse of f(x)=(4x)\div (9x-1)
|
inverse\:f(x)=(4x)\div\:(9x-1)
|
parity (sqrt(x+3))/(x-5)
|
parity\:\frac{\sqrt{x+3}}{x-5}
|
slope of y= 1/6 x+3/2
|
slope\:y=\frac{1}{6}x+\frac{3}{2}
|
inverse of f(x)=2x+5/2
|
inverse\:f(x)=2x+\frac{5}{2}
|
critical points of f(x)=sqrt(x^2+10)
|
critical\:points\:f(x)=\sqrt{x^{2}+10}
|
domain of f(x)=6sqrt(x-7)
|
domain\:f(x)=6\sqrt{x-7}
|
inverse of y=x^2-2x
|
inverse\:y=x^{2}-2x
|
range of f(x)=(2x)/(x+5)
|
range\:f(x)=\frac{2x}{x+5}
|
asymptotes of f(x)=(5x+25)/(2x+10)
|
asymptotes\:f(x)=\frac{5x+25}{2x+10}
|
asymptotes of f(x)= 1/(x-4)+2
|
asymptotes\:f(x)=\frac{1}{x-4}+2
|
inverse of f(x)=3x^3+15
|
inverse\:f(x)=3x^{3}+15
|
domain of 3x+4
|
domain\:3x+4
|
domain of f(1/2)=32x^2+16x+13
|
domain\:f(\frac{1}{2})=32x^{2}+16x+13
|
asymptotes of (x^4)/(x^2-2)
|
asymptotes\:\frac{x^{4}}{x^{2}-2}
|
range of 7/(x+2)
|
range\:\frac{7}{x+2}
|
domain of f(x)=(2x)/3
|
domain\:f(x)=\frac{2x}{3}
|
slope intercept of-9x+y=1
|
slope\:intercept\:-9x+y=1
|
midpoint (1,-6)(2,1)
|
midpoint\:(1,-6)(2,1)
|
asymptotes of (x^3)/((x-1)^2)
|
asymptotes\:\frac{x^{3}}{(x-1)^{2}}
|
asymptotes of f(x)=3^x+2
|
asymptotes\:f(x)=3^{x}+2
|
intercepts of 40(1/4)^x
|
intercepts\:40(\frac{1}{4})^{x}
|
slope intercept of x-2y=6
|
slope\:intercept\:x-2y=6
|
domain of f(x)=(11)/(11+x)
|
domain\:f(x)=\frac{11}{11+x}
|
intercepts of f(x)=y^6=x^3-16x
|
intercepts\:f(x)=y^{6}=x^{3}-16x
|
domain of f(x)=-|x|-3
|
domain\:f(x)=-|x|-3
|
range of f(x)=(sqrt(x-4))/(x-8)
|
range\:f(x)=\frac{\sqrt{x-4}}{x-8}
|
periodicity of-(cos((11pi x)/6))/(2)-2
|
periodicity\:-\frac{\cos(\frac{11\pi\:x}{6})}{2}-2
|
asymptotes of f(x)=(x-6)/(x^2-36)
|
asymptotes\:f(x)=\frac{x-6}{x^{2}-36}
|
inverse of f(x)=5x+13
|
inverse\:f(x)=5x+13
|
domain of (2x^2+2x-4)/(x^2+x)
|
domain\:\frac{2x^{2}+2x-4}{x^{2}+x}
|
domain of f(x)=(sqrt(x+6))/(6+x)
|
domain\:f(x)=\frac{\sqrt{x+6}}{6+x}
|
intercepts of y=x+4
|
intercepts\:y=x+4
|
asymptotes of f(x)=((x+5))/(x^2-3x)
|
asymptotes\:f(x)=\frac{(x+5)}{x^{2}-3x}
|
range of (x-2)^3
|
range\:(x-2)^{3}
|
inverse of ln(ex)
|
inverse\:\ln(ex)
|
asymptotes of f(x)=3+log_{2}(x)
|
asymptotes\:f(x)=3+\log_{2}(x)
|
asymptotes of f(x)=(4x^2+x-1)/(x^2+x-20)
|
asymptotes\:f(x)=\frac{4x^{2}+x-1}{x^{2}+x-20}
|